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Abstract—In this paper, we use a cell transmission model it, called mixture Kalman filtering [2] in Sections Il and
based switching state-space model to estimate vehicle densities|/, Weight underflow prevention and a forgetting scheme
and congestion modes at unmeasured locations on a highway 4 jmprove the performance of the mixture Kalman filter is
section. The mixture Kalman filter algorithm, which is based on . . . .
sequential Monte Carlo method, is employed to approximately proposeq 'n_ Section V. _In Sections VI .and Vil W? detail
solve the difficult problem of inference on a switching state- the application of the mixture Kalman filter to traffic state
space model with an unobserved discrete state. We propose a estimation and analyze the estimation results. A summary

scheme to prevent the risk of weight underflow and to introduce  and some directions for future work are given in Section VIII.
forgetting. The estimation results show that comparable accu-

racies can be achieved using either a small or a large number Il. HIGHWAY TRAFFIC MODELS

of sampling sequences, thus make it possible to carry out Hiah traffic i int i t | h
efficient online filtering. Underflow prevention and forgetting Ighway traflic IS an interesting yet compiex phenomenon

improves estimation accuracy in our examples. On average, a t0 model. Many efforts have been made to establish and val-
mean percentage error of approximately 10% is achieved for idate both microscopi.g, car-following, and macroscopic,
the vehicle density estimation. The estimation performance is e g, hydrodynamics-based, models. However, many of these
consistent with data sets from various days. models are computationally too expensive to be used for
online estimation of the traffic state in a large-scale highway
network.

Congestion on urban highway networks in metropolitan The cell transmission model (CTM) [3], [4] is an an-
areas occurs regularly and causes inefficient operation alytically simple model, yet it captures many important
highways, waste of resources, and increased air pollutiotiaffic phenomena, such as queue build-up and dissipation,
A widely used method to prevent and/or relieve highwaypackward propagation of congestion waves, etc. The CTM
congestion is to control the demand by means of oris a discrete model, both in space and time. It divides the
ramp metering. Many ramp metering strategies, such &ighway into small segments, which are called “cells”, as
time-of-day (TOD) tables, static local occupancy responsshown in Fig. 1. The traffic flong, going into a celli is
ALINEA [1], etc., have been proposed, tested and deployetbnsidered constant between two consecutive tina@st+1
on highway networks at various locations. and is determined by the following relationship:

In order to effectively control the on-ramp flows, traffic :
state information, such as vehicle density and the presence or & (® = minfvii-101-2(0, Wes (pai = i), Qua}. - ()
absence of nearby congestion, has to be made available to thigere for a celli, pj(t) is the average vehicle density
ramp metering controller. However, cost and other limitationbetween timeg andt + 1, pj; is the jam densityj.e., the
prevent sensory devices being installed and maintained mbaximum vehicle density allowed in céll v;; is the free-
all desired locations. Therefore, these traffic states must Hew speedw,; the backward congestion wave propagation
estimated using the available data. speed, andQy; is the flow capacity,i.e, the maximum

In this paper, we design and implement a traffic statpossible flow. This relationship is derived from a simplified
estimator based on an improved version of the so-calldibw-density relation, which in traffic engineering is often
mixture Kalman filter [2] and demonstrate the effectivenessalled afundamental diagranin, as shown in Fig. 2.
and efficiency of the estimator. The paper is organized as The three terms involved in the minimization in (1) can
follows: in Section Il we introduce the cell transmissionbe interpreted as follows. The first term;_10;_1(t) is the
model [3], [4], and a switching mode model [5] that isflow that can be supplied by the cél- 1. The second term
based on it. We then briefly describe the switching statés the flow that can be absorbed by the d¢elind the third
space model and an approximate inference algorithm darm Qy; is the maximum possible flow from cédl- 1 toi.

I. INTRODUCTION



—q> . . flows, respectively); is the length of celli, and Ts is the
sampling time.

When the entire highway section is in congestion mode,
the second term in (1) dominates, and the difference equa-
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Fig. 1. A highway section divided into cells. tions are
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Fig. 2. A simplified fundamental diagram (flow-density relation) used by s Woctl-?s M
the cell transmission model. | O 0 0 Is
(4)
Although the cell transmission model is much simpler = A(2)o(t) + By(2)q(t) + By(2)os, (5)

than many other higher order hydrodynamics-based partial _ ) ) _ _
differential models, the nonlinear nature of the flow-density'nerepui is the jam density (maximum allowable density)
relation still makes it difficult to analyze and to use as a basl8 cell i.
for the design of traffic controllers Mufiet al.[5] piecewise
linearized the cell transmission model and derived a CTM-
based switching-mode model, which depends on the traffic A switching state-space model can be thought of as a
congestion status in each subsection of the highway. ThH#@mbination of two popular statistical models: the hidden
switching mode model includes several modes, discrete Markov model (HMM) and the linear state-space model
states. In each mode, the vehicle densities in the cells evol(®@SM). This combined class of models is used in many
according to a different set of linear difference equationépplications, such as modeling discrete event systems, fault
Among these modes, two are of greatest importance: pud#é€tection in dynamic systems, and piecewise linearization of
free-flow and full congestion. In this paper, we furthemonlinear systems, to name a few. They are often referred
simplify this model by considering only these two modedo by different names in different fields, such as stochastic
and neglecting all other mixed cases, such as the mobgbrid systems [6] in control, hybrid dynamic Bayesian
wherein half the cells in a section are in free-flow andetworks [7], and jump Markov linear systems [8]. Within
half are in congestion. This is partially justified by the facthis paper, we shall refer to this model as étching state-

that the highway sections are short and the mixed caségace modelin Fig. 3, we represent this model graphically
are often transient. We write down this simplified switching!sing the popular Bayesian network representation. In the
state-space model with two discrete states: free-flow arture, the arrows represent conditional dependence. The
congestion, as follows. square nodes are discrete and the round ones are continuous

When the entire highway section is in free-flow mode, thstates, and shaded nodes are observed.
first term in (1) dominates, and the difference equafiare

IIl. SWITCHING STATE-SPACE MODELS
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(2) Fig. 3. The graphic representation of a switching state-space model
= A(L)o(t) + By(1)a(0). 3) g5 The graphic fep 9 P '

where gr and g are the mainline entering and exiting We define the switching state-space model as follows.
flows, respectivelyr and f are the on-ramp and off-ramp Xer1 = A(Se1)% + B(Ss1)Ust + F(Sa1)Ves s (6)

1For simplicity of notation, we use a section of 4 cells as an example. Yt = C(s)% + D(s)e + G(s)Wh, (7)



wheret = 0,1,2,... is the discrete times € S is the Once a new observation,; is available, the weightst('f{
unobserved discrete, finite-state random variakle,R™ is  are updated in such a way that favors the sample sequences
the unobserved continuous random varialples R"™ is the with larger IikeIihoodsp(yHl | Vi, Ut, sﬁm)). For this purpose,
continuous observation); € R™ is the known exogenous incremental weights are defined by
input, vi ~ N (0, I,) andw; ~ N (O, 1,,,) are the unobserved
Gaussian white noise, ani(s), B(s), C(s), D(s), F(s), = p(yeer | yooue 8™), (12)
and G(s) are the time-varying real matrices, with proper
dimensions, that are functions of the finite-state variabfe and the weights are updated as follows

Unlike HMM and SSM, there is no known exact inference

algorithm for the switching state-space model, due to the (m) A(m)
. . ) . m _ _ St S+l 13)
exponentially increasing sample spaBk as time grows. i1 m Am (

Y
However, many approximate inference algorithms have been L1806

proposed. In this paper, we use a sequential Monte Carl% dicti i babil
approach, called mixture Kalman filtering [2], which we 'N€ Predictive sampling probabili
describe briefly in the next section for completeness.

m)

1+1(S) Is defined as

ﬂﬁT{(S) o p(St(Ti =S VY1 | ng),yt, Ut+l)

m

(Yt+1 | S(Ti =S S(m), Yt, Ut+1) P(SH = S| ng),yt, Ut+l)-
(14)

IV. THE MIXTURE KALMAN FILTER ALGORITHM

For the switching state-space model as defined in (6) and P
(7), if the discrete state sequence were given from time 0
to t, then the continuous state could be easily estimated lﬂ;(( )
a (non-stationary) Kalman filter, since the sequences of the '
system matricesA, B, C, D, F, and G would be known.
Therefore, conditioned og,2 the following distributions are
readily available through a Kalman filtep (X | v, Ut, &),
P (Xe+1 | Yo Utr1, Stea), @nd p(Yesn | Ve, Ute1, Stea)-

Theoretically, the distribution ofk; can be obtained by
marginalizing the joint distribution ok and s as follows:

p(y“l | q(zrni =S S(m)’ Yo u”l) = N(Atﬂlt’ Qg%lt)’ (15)

where ‘tﬂn is the a priori expectation aanETLt is the a

priori covariance ofy;,1, which can be obtained from the
conditional Kalman filters givers™) = s, ™, y, andug.

With the definition of{™(s), the incremental weights

PO Iyeu) = [ PO Iyt )P ) ds. (8)

(m) _ (m)
. . CL s . é’ = P(Yi+1 | Y, Ut,
However, as we mentioned earlier, the prohibitive difficulty tl ( H | t t(ms; ) . -

of inference on a switching state-space model is that the = Z D(Yt+1 | S = S’SEm),Yt,Ut) D(SEJ = Sl ) ’Yt,Ut)

spaceS! grows exponentially a$ increases, which makes S (16)
the integral in (8) computationally impossible.

The mixture Kalman filter algorithm [2] utilizes a sequen- = ZuﬁT{(S). (17)
tial Monte Carlo method in which a fixed finite number, %S

M, of sequencessfm), m = 1,2,...,M, of the discrete
state are sampled carefully from the sp&eaccording to i
some sort of predictive probability, and the integral in (8) idation
approximated by a finite sumeg.,

Sy p(% | yoo e S™) p(s™ | o ut)

For any measurable functidm(x;), its conditional expec-

1G9 1y ul = [ hOPOc I yu) b (19)

P(% | Y, Up) = o o 9 _
Zme1 D(% | vi, Ut) is approximated by
M
— (m) (m) M
=) &7PX| YU ), (20) .
mzzl (xd ) E[h(4) | Yool = & fR heOP(x | i U, §7) dx.
where ™ ™ (19)
m ._ p(st | yt’ut) (11) As a special case, the continuous state estimate is obtained
t - s
Zmzl p(sfm) | Yt, Ut) by
M
are normalized time-varying weights that represent the con- o (m) o(m)
" . = , 20
ditional probability. X th it (20)
m=1
2|n the following discussion, we will not distinguish between a random om) - L . .
variable and its realization. where X 1S the a posteriori state estimation from a con-

3For simplicity of notation, we make the following convention: a normalditional Kalman filter given a sample sequenx{@). This

font (medium weighted) variables.g, s, denotes a single sample of that . . . . . . ..
variable at timet, while a bold variablee.g, s, denotes a sequence of estimation is referred to amixture estimatiorbecause it is

samples from time O to, i.e,, & = {So,S1,.. ., S} a weighted sum of thé1 conditional Kalman estimations.
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Fig. 4. Cell configuration for the section of Interstate 210 West in Pasadena, CA, from Myrtle to Santa Anita.

V. WEIGHT UNDERFLOW PREVENTION AND from 34.049 to 32.019, as shown in Fig. 4. This section is
FORGETTING divided into 8 cells. The loop detectors are located at the

In the implementation of the mixture Kalman filter algo-tWO boundaries andlln the middle, as shown in the figure.
rithm, we find that after a certain period of time, most of herefore, we consider the two boundary flogs and
the weightsgt(m) approach 0, while only a few are of modestdm2; aqq the densities in cells 1, 5, and 8 are measured.
magnitudes. This phenomenon is a direct result of the weight addition, the ramp flowss, rp, f1, and f, are also

update scheme (13)—(17) and may have several undesiraBlg§asured. However we do not make the measured density
effects: available to the model. This provides us a way to compare the

Lo .estimated and measured densities and enable us to evaluate
1) The contributions of those sample sequences wit

tiny weights to the mixture estimate are negligible he performance of the mixture Kalman filter.
R . : Bx8
Therefore, the effective number of sample sequences isWIth the above configuration, we hawl), A(2) € R*%,

reduced and computation time and memory are wastélﬂth similar structure as theA” matrices in (2) and (4),

to maintain these sample sequences. 1 00 0 00O
2) There exists an underflow risk for these tiny weights C(1)=C@2) = [0 0 00O0GO OO i
due to limited floating point precision. If underflow
does happen to some of the weights, their correspon@nd
ing sample sequences become permanently inactive. D(1)=D(2)=0. (24)
3) The influence of the early history persists. It is difficult »
for the tiny weights to grow back to within a modest'Ve also letB = [Bq BJ] and setB;(1) = 0. In addition, we
range of magnitudes, even if the current likelihood§l€fine
(12) favor these sample sequences. F(s) = ou(9)ln,, (25)

We propose to introduce a lower bound to the weightqu
al

t(m) to address these potential problems. We choose a sm
positive numbek <« 1 and set the weight lower bound G(s) = ow(9n,, (26)

(23)

é= £ i (21) where o(s) and o(s) are the standard deviations of the
= M white noisev and w in the two modes, respectively, and
where M is the number of the sample sequences. Aftesc S = {1,2} (1 is the free-flow mode and 2 the congestion
updating the weights according to (13)—(17), we lower bounohode).
the weights In order to sample the sequences and update the weights,
&) = max{el) ¢} (22) the predictive sampling probabilities as defined in (14) have

t+1°
_ to be computed. We simplify this expression as follows.
for all m and re-normalize them.

This simple procedure prevents the underflow phe- D(%(Ti = s| SEm),yt,qu)
nomenon. It also acts as a forgetting factor for the weights

update in the sense that it stops the influence of the early IO(Sq(Ti = S| Xt, ng)sYt,UHl) p(Xt | ng),)/t,um) dxt
history once the effect of the history reduces the weight to the ~*™" @7)
minimum level. It makes the weights recover more quickly

once their corresponding sample sequences are favored by p(sT = s| % 8™) p (% X1 | ™. yi. ur) dx; (28)
the current measurements. On the other hand, it introduces VE™

onl_y min_imal estimation error because its total effect on thezf p(SfT} — Sl X s'gm)) p(Xt | ng)’ Voo Ut) dx;, (29)
weights is bounded by the small numher R

where in the step from (27) to (28) we utilize the conditional

. ) i independence fact that gives and x;, &1 IS independent
ifornia highways by loop detectors buried in the pavemeng aphical model in Fig. 3ie.,

Our object in this study is a section of Interstate 210 West in
Pasadena, CA, from Myrtle to Santa Anita, with postmiles P(Ss1lS,Xt)=pP(Su1l S X%). (30)

VI. APPLICATION TOHIGHWAY TRAFFIC ESTIMATION



In this step, we also use the fact that and u,,; are the MAP estimation of the congestion mode are shown. The
conditionally independent. The step from (28) to (29) isletailed information, such as the date of the data, estimation

marginalization overx;_;. parameters, etc., can be found in the captions of the figures.
The two factors in (29) can be obtained as follows. Fronin the congestion mode subplaifar), 1 represents free-flow
the conditional Kalman filters giveefm), Vi, anduy, and 2 congestion.
p (Xt | ng)7 yt» Ut) — N (f(slrtn)’ Pgtn)) , (31) 200 Ver‘nc\e Densiues‘(vehlm\), Apri\‘lo, QDOI‘M:‘SOD —

— = Mixture Est.

where >“<f|T) is the a posteriori expectation and3§|’t“) is the 2 1o}

a posteriori covariance of the continuous state. And o . 7 5 . m m 2

p(q(:”i =s| x. sfm)) is thea priori transition probability. - N T ‘ ‘

For simplicity, we neglect the conditional dependence S0l -

betweens.; and x, i.e., the dashed arrow shown in Fig. 3. of L . L L - L ),

Therefore, the discrete state transition probability in (30) is P ‘ ‘ ‘ ‘ ‘
simply given by a table ‘jji/,/\/*m%
P(ste1 | s%) = P(Sa | &) N g : : 2w 2= o=
sasl a2 (3 S — ] i

= g=1| 095 005 . o ‘ ‘ ‘ ‘ ‘ ‘
§=2| 005 Q95 T e ° %

This transition probability makes the discrete state jump qu‘:%_ 5. Measured and estimated densities, with estimated traffic congestion
often. It corresponds to a mean transition time3®&0Ts, mode. April 10, 2001M = 500 Underflow prevention and forgetting not
which is roughly 31 minutes. employed.

We are also able to obtain an approximate maximam
posteriori (MAP) estimation of the discrete statg using
the following approximation of th@ posterioridistribution
of s:

Vehicle Densities (veh/mi), April 10, 2001, M = 10
T T T T

= = Mixture Est.
- "MAP"Est,

P(st | i U) = E[1s(s) | Y e (33) sl ST
- [ @i @) B ‘
St 5 6 7 8 9 10 11 12
M g3()0 T T T T T
~ )My (4m), (35) W
m=1 B S e e
where : ‘ ‘ ‘ ‘ ‘ ‘
1 ifs=s Il Il
1 = 36 1
o(8) {0 otherwise, 30 s
Time (hour)
is the indicator function ofs. The sequence of the MAP
; ; ; Fig. 6. Measured and estimated densities, with estimated traffic congestion
estimates for the discrete state is mode. April 10, 2001.M = 10. Underflow prevention and forgetting not
&wmap = arg msaXp(St =S|y, Up). (37) employed.

Once we have the MAP discrete state estimation, we aag(I{n order to quantitatively compare the performance of

able to estimate the continuous state by a non-stational: erent estimates, such as those with different values of

Kalman filter conditioned or& vap. We denote this estimate ,t.thetmlxtu.trre] estmjt?]test anq tEte M dAPﬂ esumates,t_and th de
by kfl‘t’M“P and informally call it the “MAP” estimation of the estimates with or without weight undertiow prevention an

t for ing, wi fin mean percen rrorm r
continuous state. orgetting, we define a mean percentage error measure

T
VIl. RESULTS EmpE = T 1 1 Z . (38)

The traffic flow and vehicle density data were obtained M=

through the PeMS database [9] for four different days. lin particular, here we only consider the density and its
our implementation of the mixture Kalman filter, differentestimation in cell 5,i.e,, ps and ps, because we have the
values ofM are used in order to experiment with the effectneasurement. The error measures, averaged from the results
of the number of sample sequence. We also experimeot several runs, for different estimates are listed in Table I.
with the effect of the weight underflow prevention and It can be seen from the table that the algorithm achieves
forgetting scheme that we proposed. Figures 5-7 showsatisfactory results. On average, the mean percentage errors
few examples of the estimation results. In the plots, thare about 10%. The performance is consistent with data
estimated vehicle densities, as well as the measured ones, aats from various days. With a small number of sample

)’Ztlt — Xt
Xt



TABLE |
THE MEAN PERCENTAGE ERROR MEASURES FOR THE VARIOUS ESTIMATES @§ ON DIFFERENT DAYS

Forgetting E March 15, 2001 March 27, 2001 April 10, 2001 April 25, 2001
MPE S SMAP o SSUMAP N SSUMAP S cSUMAP
| % o | % R EY o | %
M =10 0.10661 0.10691 0.11012 0.11059 0.09549 0.09590 0.10575 0.10612
No M =100 0.10639 0.10659 0.10987 0.11061 0.09492 0.09542 0.10565 0.10592

M =500 0.10629 0.10652 0.10981 0.11033 0.09479 0.09506 0.10575 0.10594
M =10 0.10634 0.10660 0.10978 0.11036 0.09477 0.09517 0.10554 0.10584
Yes M =100 0.10625 0.10640 0.10976 0.11062 0.09453 0.09491 0.10563 0.10590
M =500 0.10611 0.10626 0.10972 0.11045 0.09464 0.09466 0.10565 0.10573

Vehicle Densities (vehvmi), April 10, 2001, M = 10
T T T

e forgetting scheme improves estimation accuracy.

' We are currently working on designing a ramp metering
algorithm to relieve highway congestion and to improve
o : T : : : capacity utilization. Analogous to the mixture Kalman filter,
g0 7, Mg ] we are looking into a so-calledhixture controller Given a
sample discrete state sequemf!@, a stabilizing controller
can be designed under the framework of Markovian jump

%200% linear systems (MJLS) [10]. The mixture control command
8" will be the weighted sum of the sample sequence conditioned

N ° i ’ i 0 " 2 control commands. Findings and results will be reported in
SR e THITNEEE future publications.
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