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Abstract— In this paper, we use a cell transmission model
based switching state-space model to estimate vehicle densities
and congestion modes at unmeasured locations on a highway
section. The mixture Kalman filter algorithm, which is based on
sequential Monte Carlo method, is employed to approximately
solve the difficult problem of inference on a switching state-
space model with an unobserved discrete state. We propose a
scheme to prevent the risk of weight underflow and to introduce
forgetting. The estimation results show that comparable accu-
racies can be achieved using either a small or a large number
of sampling sequences, thus make it possible to carry out
efficient online filtering. Underflow prevention and forgetting
improves estimation accuracy in our examples. On average, a
mean percentage error of approximately 10% is achieved for
the vehicle density estimation. The estimation performance is
consistent with data sets from various days.

I. I NTRODUCTION

Congestion on urban highway networks in metropolitan
areas occurs regularly and causes inefficient operation of
highways, waste of resources, and increased air pollution.
A widely used method to prevent and/or relieve highway
congestion is to control the demand by means of on-
ramp metering. Many ramp metering strategies, such as
time-of-day (TOD) tables, static local occupancy response,
ALINEA [1], etc., have been proposed, tested and deployed
on highway networks at various locations.

In order to effectively control the on-ramp flows, traffic
state information, such as vehicle density and the presence or
absence of nearby congestion, has to be made available to the
ramp metering controller. However, cost and other limitations
prevent sensory devices being installed and maintained at
all desired locations. Therefore, these traffic states must be
estimated using the available data.

In this paper, we design and implement a traffic state
estimator based on an improved version of the so-called
mixture Kalman filter [2] and demonstrate the effectiveness
and efficiency of the estimator. The paper is organized as
follows: in Section II we introduce the cell transmission
model [3], [4], and a switching mode model [5] that is
based on it. We then briefly describe the switching state-
space model and an approximate inference algorithm on

it, called mixture Kalman filtering [2] in Sections III and
IV. Weight underflow prevention and a forgetting scheme
to improve the performance of the mixture Kalman filter is
proposed in Section V. In Sections VI and VII we detail
the application of the mixture Kalman filter to traffic state
estimation and analyze the estimation results. A summary
and some directions for future work are given in Section VIII.

II. H IGHWAY TRAFFIC MODELS

Highway traffic is an interesting yet complex phenomenon
to model. Many efforts have been made to establish and val-
idate both microscopic,e.g., car-following, and macroscopic,
e.g., hydrodynamics-based, models. However, many of these
models are computationally too expensive to be used for
online estimation of the traffic state in a large-scale highway
network.

The cell transmission model (CTM) [3], [4] is an an-
alytically simple model, yet it captures many important
traffic phenomena, such as queue build-up and dissipation,
backward propagation of congestion waves, etc. The CTM
is a discrete model, both in space and time. It divides the
highway into small segments, which are called “cells”, as
shown in Fig. 1. The traffic flowqi going into a celli is
considered constant between two consecutive timest andt+1
and is determined by the following relationship:

qi(t) = min
{
vf ,i−1ρi−1(t),wc,i

(
ρJ,i − ρi(t)

)
,QM,i

}
, (1)

where for a cell i, ρi(t) is the average vehicle density
between timest and t + 1, ρJ,i is the jam density,i.e., the
maximum vehicle density allowed in celli, vf ,i is the free-
flow speed,wc,i the backward congestion wave propagation
speed, andQM,i is the flow capacity,i.e., the maximum
possible flow. This relationship is derived from a simplified
flow-density relation, which in traffic engineering is often
called afundamental diagramin, as shown in Fig. 2.

The three terms involved in the minimization in (1) can
be interpreted as follows. The first termvf ,i−1ρi−1(t) is the
flow that can be supplied by the celli − 1. The second term
is the flow that can be absorbed by the celli. And the third
term QM,i is the maximum possible flow from celli − 1 to i.
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Fig. 1. A highway section divided into cells.
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Fig. 2. A simplified fundamental diagram (flow-density relation) used by
the cell transmission model.

Although the cell transmission model is much simpler
than many other higher order hydrodynamics-based partial
differential models, the nonlinear nature of the flow-density
relation still makes it difficult to analyze and to use as a basis
for the design of traffic controllers Muñozet al. [5] piecewise
linearized the cell transmission model and derived a CTM-
based switching-mode model, which depends on the traffic
congestion status in each subsection of the highway. This
switching mode model includes several modes,i.e., discrete
states. In each mode, the vehicle densities in the cells evolve
according to a different set of linear difference equations.
Among these modes, two are of greatest importance: pure
free-flow and full congestion. In this paper, we further
simplify this model by considering only these two modes
and neglecting all other mixed cases, such as the mode
wherein half the cells in a section are in free-flow and
half are in congestion. This is partially justified by the fact
that the highway sections are short and the mixed cases
are often transient. We write down this simplified switching
state-space model with two discrete states: free-flow and
congestion, as follows.

When the entire highway section is in free-flow mode, the
first term in (1) dominates, and the difference equations1 are
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(2)

= A(1)ρ(t) + Bq(1)q(t), (3)

where qm1 and qm2 are the mainline entering and exiting
flows, respectively,r and f are the on-ramp and off-ramp

1For simplicity of notation, we use a section of 4 cells as an example.

flows, respectively,l i is the length of celli, and Ts is the
sampling time.

When the entire highway section is in congestion mode,
the second term in (1) dominates, and the difference equa-
tions are
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(4)

= A(2)ρ(t) + Bq(2)q(t) + BJ(2)ρJ, (5)

whereρJi is the jam density (maximum allowable density)
in cell i.

III. SWITCHING STATE-SPACE MODELS

A switching state-space model can be thought of as a
combination of two popular statistical models: the hidden
Markov model (HMM) and the linear state-space model
(SSM). This combined class of models is used in many
applications, such as modeling discrete event systems, fault
detection in dynamic systems, and piecewise linearization of
nonlinear systems, to name a few. They are often referred
to by different names in different fields, such as stochastic
hybrid systems [6] in control, hybrid dynamic Bayesian
networks [7], and jump Markov linear systems [8]. Within
this paper, we shall refer to this model as theswitching state-
space model. In Fig. 3, we represent this model graphically
using the popular Bayesian network representation. In the
figure, the arrows represent conditional dependence. The
square nodes are discrete and the round ones are continuous
states, and shaded nodes are observed.

st st+1
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yt yt+1

ut+1ut

xt+1

Fig. 3. The graphic representation of a switching state-space model.

We define the switching state-space model as follows.

xt+1 = A(st+1)xt + B(st+1)ut+1 + F(st+1)vt+1, (6)

yt = C(st)xt + D(st)ut +G(st)wt, (7)



where t = 0,1,2, . . . is the discrete time,st ∈ S is the
unobserved discrete, finite-state random variable,xt ∈ R

nx is
the unobserved continuous random variable,yt ∈ R

ny is the
continuous observation,ut ∈ R

nu is the known exogenous
input, vt ∼ N

(
0, Inv

)
andwt ∼ N

(
0, Inw

)
are the unobserved

Gaussian white noise, andA(st), B(st), C(st), D(st), F(st),
and G(st) are the time-varying real matrices, with proper
dimensions, that are functions of the finite-state variablest.2

Unlike HMM and SSM, there is no known exact inference
algorithm for the switching state-space model, due to the
exponentially increasing sample spaceSt as time grows.
However, many approximate inference algorithms have been
proposed. In this paper, we use a sequential Monte Carlo
approach, called mixture Kalman filtering [2], which we
describe briefly in the next section for completeness.

IV. T HE M IXTURE KALMAN FILTER ALGORITHM

For the switching state-space model as defined in (6) and
(7), if the discrete state sequence were given from time 0
to t, then the continuous state could be easily estimated by
a (non-stationary) Kalman filter, since the sequences of the
system matricesA, B, C, D, F, and G would be known.
Therefore, conditioned onst,3 the following distributions are
readily available through a Kalman filter:p (xt | yt,ut, st),
p (xt+1 | yt,ut+1, st+1), and p (yt+1 | yt,ut+1, st+1).

Theoretically, the distribution ofxt can be obtained by
marginalizing the joint distribution ofxt and st as follows:

p (xt | yt,ut) =
∫

St
p (xt | yt,ut, st) p (st | yt,ut) dst. (8)

However, as we mentioned earlier, the prohibitive difficulty
of inference on a switching state-space model is that the
spaceSt grows exponentially ast increases, which makes
the integral in (8) computationally impossible.

The mixture Kalman filter algorithm [2] utilizes a sequen-
tial Monte Carlo method in which a fixed finite number,
M, of sequences,s(m)

t , m = 1,2, . . . ,M, of the discrete
state are sampled carefully from the spaceSt according to
some sort of predictive probability, and the integral in (8) is
approximated by a finite sum,i.e.,

p (xt | yt,ut) ≈
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m=1 p

(
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t
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p
(
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t
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(
s(m)

t
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) , (11)

are normalized time-varying weights that represent the con-
ditional probability.

2In the following discussion, we will not distinguish between a random
variable and its realization.

3For simplicity of notation, we make the following convention: a normal
font (medium weighted) variable,e.g., st, denotes a single sample of that
variable at timet, while a bold variable,e.g., st, denotes a sequence of
samples from time 0 tot, i.e., st = {s0, s1, . . . , st}.

Once a new observationyt+1 is available, the weightsξ(m)
t+1

are updated in such a way that favors the sample sequences
with larger likelihoodsp

(
yt+1

∣∣∣ yt,ut, s
(m)
t

)
. For this purpose,

incremental weights are defined by

ζ(m)
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yt+1

∣∣∣ yt,ut, s
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)
, (12)

and the weights are updated as follows

ξ(m)
t+1 =

ξ(m)
t ζ

(m)
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m=1 ξ
(m)
t ζ

(m)
t+1

. (13)

The predictive sampling probabilityµ(m)
t+1(s) is defined as

µ(m)
t+1(s) ∝ p

(
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In (14),

p
(
yt+1

∣∣∣ s(m)
t+1 = s, s(m)

t , yt,ut+1

)
= N
(
ŷ(m)

t+1|t,Q
(m)
t+1|t

)
, (15)

where ŷ(m)
t+1|t is the a priori expectation andQ(m)

t+1|t is the a
priori covariance ofyt+1, which can be obtained from the
conditional Kalman filters givens(m)

t+1 = s, s(m)
t , yt, andut+1.

With the definition ofµ(m)
t+1(s), the incremental weights

ζ(m)
t+1 = p

(
yt+1

∣∣∣ yt,ut, s
(m)
t

)
=
∑
s∈S

p
(
yt+1

∣∣∣ s(m)
t+1 = s, s(m)

t , yt,ut

)
p
(
s(m)

t+1 = s
∣∣∣ s(m)

t , yt,ut

)
(16)

=
∑
s∈S

µ(m)
t+1(s). (17)

For any measurable functionh(xt), its conditional expec-
tation

E
[
h(xt) | yt,ut

]
=

∫
Rnx

h(xt)p (xt | yt,ut) dxt (18)

is approximated by

Ê
[
h(xt) | yt,ut

]
=

M∑
m=1

ξ(m)
t

∫
Rnx

h(xt)p
(
xt

∣∣∣ yt,ut, s
(m)
t

)
dxt.

(19)
As a special case, the continuous state estimate is obtained
by

x̂t|t =

M∑
m=1

ξ(m)
t x̂(m)

t|t , (20)

where x̂(m)
t|t is the a posteriori state estimation from a con-

ditional Kalman filter given a sample sequences(m)
t . This

estimation is referred to asmixture estimationbecause it is
a weighted sum of theM conditional Kalman estimations.
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Fig. 4. Cell configuration for the section of Interstate 210 West in Pasadena, CA, from Myrtle to Santa Anita.

V. WEIGHT UNDERFLOW PREVENTION AND

FORGETTING

In the implementation of the mixture Kalman filter algo-
rithm, we find that after a certain period of time, most of
the weightsξ(m)

t approach 0, while only a few are of modest
magnitudes. This phenomenon is a direct result of the weight
update scheme (13)–(17) and may have several undesirable
effects:

1) The contributions of those sample sequences with
tiny weights to the mixture estimate are negligible.
Therefore, the effective number of sample sequences is
reduced and computation time and memory are wasted
to maintain these sample sequences.

2) There exists an underflow risk for these tiny weights
due to limited floating point precision. If underflow
does happen to some of the weights, their correspond-
ing sample sequences become permanently inactive.

3) The influence of the early history persists. It is difficult
for the tiny weights to grow back to within a modest
range of magnitudes, even if the current likelihoods
(12) favor these sample sequences.

We propose to introduce a lower bound to the weights
ξ(m)

t to address these potential problems. We choose a small
positive numberε � 1 and set the weight lower bound

ξ =
ε

M
, (21)

where M is the number of the sample sequences. After
updating the weights according to (13)–(17), we lower bound
the weights

ξ(m)
t+1 = max

{
ξ(m)

t+1, ξ
}
, (22)

for all m and re-normalize them.
This simple procedure prevents the underflow phe-

nomenon. It also acts as a forgetting factor for the weights
update in the sense that it stops the influence of the early
history once the effect of the history reduces the weight to the
minimum level. It makes the weights recover more quickly
once their corresponding sample sequences are favored by
the current measurements. On the other hand, it introduces
only minimal estimation error because its total effect on the
weights is bounded by the small numberε.

VI. A PPLICATION TO HIGHWAY TRAFFIC ESTIMATION

Vehicle density and traffic flow data are collected on Cal-
ifornia highways by loop detectors buried in the pavement.
Our object in this study is a section of Interstate 210 West in
Pasadena, CA, from Myrtle to Santa Anita, with postmiles

from 34.049 to 32.019, as shown in Fig. 4. This section is
divided into 8 cells. The loop detectors are located at the
two boundaries and in the middle, as shown in the figure.
Therefore, we consider the two boundary flowsqm1 and
qm2, and the densities in cells 1, 5, and 8 are measured.
In addition, the ramp flowsr1, r2, f1, and f2 are also
measured. However we do not make the measured densityρ5

available to the model. This provides us a way to compare the
estimated and measured densities and enable us to evaluate
the performance of the mixture Kalman filter.

With the above configuration, we haveA(1),A(2) ∈ R8×8,
with similar structure as the “A” matrices in (2) and (4),

C(1) = C(2) =

[
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

]
, (23)

and

D(1) = D(2) = 0. (24)

We also letB =
[
Bq BJ

]
and setBJ(1) = 0. In addition, we

define

F(s) = σv(s)Inx, (25)

and

G(s) = σw(s)Iny, (26)

whereσv(s) and σw(s) are the standard deviations of the
white noisev and w in the two modes, respectively, and
s ∈ S = {1,2} (1 is the free-flow mode and 2 the congestion
mode).

In order to sample the sequences and update the weights,
the predictive sampling probabilities as defined in (14) have
to be computed. We simplify this expression as follows.

p
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dxt, (29)

where in the step from (27) to (28) we utilize the conditional
independence fact that givenst and xt, st+1 is independent
of yt and ut+1, and the Markov assumption we made in the
graphical model in Fig. 3,i.e.,

p (st+1 | st, xt) = p (st+1 | st, xt) . (30)



In this step, we also use the fact thatxt and ut+1 are
conditionally independent. The step from (28) to (29) is
marginalization overxt−1.

The two factors in (29) can be obtained as follows. From
the conditional Kalman filters givens(m)

t , yt, andut,

p
(
xt

∣∣∣ s(m)
t , yt,ut

)
= N
(
x̂(m)

t|t ,P
(m)
t|t

)
, (31)

where x̂(m)
t|t is the a posteriori expectation andP(m)

t|t is the
a posteriori covariance of the continuous statext. And
p
(
s(m)
t+1 = s

∣∣∣ xt, s
(m)
t

)
is thea priori transition probability.

For simplicity, we neglect the conditional dependence
betweenst+1 and xt, i.e., the dashed arrow shown in Fig. 3.
Therefore, the discrete state transition probability in (30) is
simply given by a table

p (st+1 | st, xt) = p (st+1 | st)

=

st+1 = 1 st+1 = 2
st = 1 0.95 0.05
st = 2 0.05 0.95

.
(32)

This transition probability makes the discrete state jump less
often. It corresponds to a mean transition time of380Ts,
which is roughly 31 minutes.

We are also able to obtain an approximate maximuma
posteriori (MAP) estimation of the discrete statest using
the following approximation of thea posteriori distribution
of st:

p (st | yt,ut) = E
[
1s(st) | yt,ut

]
(33)

=

∫
St

1s(st)p (st | yt,ut) dst (34)

≈

M∑
m=1

ξ(m)
t 1s

(
s(m)
t

)
, (35)

where

1s(st) :=

1 if st = s,

0 otherwise,
(36)

is the indicator function ofst. The sequence of the MAP
estimates for the discrete state is

ŝt,MAP = arg max
s

p (st = s | yt,ut) . (37)

Once we have the MAP discrete state estimation, we are
able to estimate the continuous state by a non-stationary
Kalman filter conditioned on̂st,MAP. We denote this estimate
by x̂ŝt,MAP

t|t and informally call it the “MAP” estimation of the
continuous state.

VII. R ESULTS

The traffic flow and vehicle density data were obtained
through the PeMS database [9] for four different days. In
our implementation of the mixture Kalman filter, different
values ofM are used in order to experiment with the effect
of the number of sample sequence. We also experiment
with the effect of the weight underflow prevention and
forgetting scheme that we proposed. Figures 5–7 show a
few examples of the estimation results. In the plots, the
estimated vehicle densities, as well as the measured ones, and

the MAP estimation of the congestion mode are shown. The
detailed information, such as the date of the data, estimation
parameters, etc., can be found in the captions of the figures.
In the congestion mode subplot (sMAP), 1 represents free-flow
and 2 congestion.
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Fig. 5. Measured and estimated densities, with estimated traffic congestion
mode. April 10, 2001.M = 500. Underflow prevention and forgetting not
employed.
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Fig. 6. Measured and estimated densities, with estimated traffic congestion
mode. April 10, 2001.M = 10. Underflow prevention and forgetting not
employed.

In order to quantitatively compare the performance of
different estimates, such as those with different values of
M, the mixture estimates and the “MAP” estimates, and the
estimates with or without weight underflow prevention and
forgetting, we define a mean percentage error measure

EMPE =
1

T + 1

T∑
t=0

∣∣∣∣∣ x̂t|t − xt

xt

∣∣∣∣∣ . (38)

In particular, here we only consider the density and its
estimation in cell 5,i.e., ρ5 and ρ̂5, because we have the
measurement. The error measures, averaged from the results
of several runs, for different estimates are listed in Table I.

It can be seen from the table that the algorithm achieves
satisfactory results. On average, the mean percentage errors
are about 10%. The performance is consistent with data
sets from various days. With a small number of sample



TABLE I

THE MEAN PERCENTAGE ERROR MEASURES FOR THE VARIOUS ESTIMATES OFρ5 ON DIFFERENT DAYS.

March 15, 2001 March 27, 2001 April 10, 2001 April 25, 2001
Forgetting EMPE

x̂t|t x̂
ŝt,MAP
t|t x̂t|t x̂

ŝt,MAP
t|t x̂t|t x̂

ŝt,MAP
t|t x̂t|t x̂

ŝt,MAP
t|t

M = 10 0.10661 0.10691 0.11012 0.11059 0.09549 0.09590 0.10575 0.10612

No M = 100 0.10639 0.10659 0.10987 0.11061 0.09492 0.09542 0.10565 0.10592

M = 500 0.10629 0.10652 0.10981 0.11033 0.09479 0.09506 0.10575 0.10594

M = 10 0.10634 0.10660 0.10978 0.11036 0.09477 0.09517 0.10554 0.10584

Yes M = 100 0.10625 0.10640 0.10976 0.11062 0.09453 0.09491 0.10563 0.10590

M = 500 0.10611 0.10626 0.10972 0.11045 0.09464 0.09466 0.10565 0.10573
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Fig. 7. Measured and estimated densities, with estimated traffic congestion
mode. April 10, 2001.M = 10. Underflow prevention and forgetting
employed.

sequences,e.g., M = 10, the algorithm achieves comparable
estimation errors as withM = 500. This observation enables
us to carry out efficient online filtering by using only a small
number of sample sequences. It can also been seen from
the table that the proposed weight underflow prevention and
forgetting scheme improves the estimation accuracy slightly.

Another interesting observation is that the mixture esti-
mation x̂t|t performs slightly better than the MAP discrete
sequence conditioned Kalman estimationx̂st,MAP

t|t in general.
This is because we only consider two modes in the switching
state-space model and neglect other possible cases, such as
the one that half of the section is in free-flow and half
in congestion. The mixture estimation might account for
these mixed cases better. However, since these mixed cases
are transient and only last a short period of time, their
contributions to the mean error are minimal.

VIII. S UMMARY AND FUTURE WORK

In this paper, we have applied an approximate inference
algorithm called a mixture Kalman filter to a cell transmis-
sion based switching state-space model to estimate vehicle
densities and congestion modes at unmeasured locations
on a highway section. The sequential Monte Carlo based
algorithm is effective and efficient. On average, a mean
percentage error of∼ 10% is achieved, and is consistent
over different days. The algorithm achieves comparable
performance with a significantly smaller number of sample
sequences. The proposed weight underflow prevention and

forgetting scheme improves estimation accuracy.
We are currently working on designing a ramp metering

algorithm to relieve highway congestion and to improve
capacity utilization. Analogous to the mixture Kalman filter,
we are looking into a so-calledmixture controller. Given a
sample discrete state sequences(m)

t , a stabilizing controller
can be designed under the framework of Markovian jump
linear systems (MJLS) [10]. The mixture control command
will be the weighted sum of the sample sequence conditioned
control commands. Findings and results will be reported in
future publications.
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