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Control of Smart Exercise Machines—Part Il:
Self-Optimizing Control

Perry Y. Li, Member, IEEE and Roberto HorowitzMember, IEEE

Abstract—This is the second part of a two-part paper on output throughout the exercise motion. To ensure that the
the design of an intelligent controller for a class of exercise exercise machine is safe to operate, the closed-loop control
machines. The control objective is to cause the user to exercise in asystem is also constrained to interact passively with the user.

manner that optimizes a criterion related to the user’s mechanical To thi dad ic d . I din
power. The optimal exercise strategy is determined by ara 10 this end, a dynamic damping controller was proposed in [1]

priori unknown biomechanical behavior, called the Hill surface, Which satisfies this closed-loop passivity requirement and, if
of the individual user. Consequently, the control scheme must the user’s Hill surface is known, is capable of causing the user
simultaneously: 1) identify the user's biomechanical behavior; 5 execute an arbitrarilgpecifiedvelocity field. In particular,

2) optimize the controller; and 3) stabilize the system to the . . . d . .
e)stin?ated optimal states. In Part) | of this paper)’/ a dynamic if the optimal velocity field is specified, then the user would

damping controller was proposed which satisfies the safety re- Perform the optimal exercise.

quirement and is capable of causing the user to execute an Unfortunately, the Hill surface is generally unknoven
arbitrary exercise strategy if the user's biomechanical behavior priori, since it is both user specific and varies with the user’s
is known. In this second part of the paper, we address the self- iy /a1i0n and fatigue state during the exercise session. Thus,
optimization problem in WhICh. both the Qetermlnatlon and the the d ic d h troller in M1 is inad te | .
eventual execution of the optimal exercise strategy are accom- the dynamic damping controller in [1] is inadequate in causing
plished, when the users biomechanical behavior is unknown. the user to execute the optimal velocity field, nor can the
This is achieved by a combination of an adaptive controller and optimal velocity field be specified in the first place. The present

a reference generator. The latter switches the desired exercise paper addresses these inadequacies by developing an adaptive

strategy between a training strategy and the estimated optimal version of the dvnamic dampin ntroller and by desianin
strategy. Depending on the switching scheme chosen, it is shown ersion ot the dynamic damping controlier a y designing a

that, asymptotically, the user will either execute the optimal reference velocity field generator, so that the optimal velocity
exercise with probability one or operate close to it. Experimental field can be ultimately specified.

results of the overall system verify the efficacy of the design. The problem at hand belongs to the class of “self-optimizing

Index Terms—Adaptive control, biomechanics, hybrid systems, control” problems [2] in which a plant with soma priori

intelligent control, passivity, robotics, self optimization, velocity unknown parameters is required to perform an optimal task

field control. with respect to a performance index. In our present problem,

the user must execute the optimal velocity field specific to

I. INTRODUCTION his/fher Hill surface, despite the fact that the Hill surface

HIS PAPER and the companion paper [1] are concernéd l_JnI_<n_owna priori. The main dlffe_rence betyveen a se_lf-
: . . : . ptimizing control problem and a typical adaptive or learning
with the formulation, analysis, and implementation of S . .

. é:lt_)ntrol problem lies in the fact that, since the optimal task
enerally depends on the unknown plant parameters, it cannot
e explicitly specified beforehand and has to be determined on-
ine. Indeed, without knowledge of the plant, it may not even

lae possible to decide if the plant is, in fact, operating optimally.

position and velocity of the exercising motion. Each exercié@ contrast, in a typical adaptive or learning contrpl probllem
strategy can, therefore, be encoded by a velocity field &9 [31-[6] and others), the task (such as following a given
the configuration space of the machine and corresponds tJ@ectory) is explicitly specified priori, and the objective is
trajectory on the Hill surface of the user. The control objectii9 Perform this task with good precision in the presence of
is to manipulate the assistive/resistive force on the exerclk@ametric and nonparametric uncertainties in the plant and
machine, so that the user exercises according to the optirRgVironment dynamics. If the optimal task can be specified
velocity field specific to the user's Hill surface. A typical®XPlicitly, then one may develop an adaptive controller to

optimal exercise would maximize the user's mechanical pow@pable that task to be performed. Typically, the estimates of
the plant parameters do not even have to converge to the true
Manuscript received February 22, 1997; revised September 2, 199hes. In fact, vanishing of parameter estimation error seldom
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regions of the Hill surface. In other words, the exercise Il. BACKGROUND
must be sufficiently exciting. On the other hand, the optimal

exercise which we would like the user to perform is nNoA_ control Problem Review
sufficiently exciting. Hence, a conflict exists between the

objectives of exercising optimally and of identification. This The single-degree-of-freedom experimental exercise ma-
conflict is the essence of thaual control problem posed in chine used in our research was described in [1]. It consists of

[7]. This difficulty is illustrated by a result in adaptive linea® rigid link connected to a dc motor at one end and is attached

quadratic (LQ) control which states that the set of controlldf & handlg at the other. The user EXErcises by rotating the.lmk
parameters which induce optimality is a thin set in the s ile holdmg the handle. The motor provides for the reS|st|ye
of all possible convergence points [8]. Hence, it is not likel r assistive force to cause the user to execute the desired

that the controller will converge to the optimal controller. Th xercise strategy. The configuration space of this system is

. : the circleG = [0, 27), so that is the angle of the rigid
(static) extremum control problem, where the optimal outp K with rges <[ac’t tg)a refererfci in e Thegd namics gf this
is to be achieved for an unknown plant, was considered ,Ht P b gle. y
[9]. In [9], the estimated optimal input is updated on-ling€tUP are given by
and is superimposed with a dither signal before it is applied. .. Y
Because of the dither, the input signal never really optimizes M{z(£)£(t) + Cla(8)27(t) = F() + T(?) ()
the objective criterion. Intuitively, if changes of the plan%here F(#) is the generalized force (torque) generated by
characteristics or the badness of the parameter estimates ca ke ser andZ’(t) is the torque generated by the motor
detected, the dithering or the excitation signal can be appli ich is ’the manipulated control variablel(z) € R+ is the '
only at those instances. A similar idea in adaptive control ¢ . . . .9 .- .

neralized inertia an@’ is the Coriolis and centripetal
be found in [10] and [11], where the strength of an excitatic?r({)é () P

. X . . . . rce, and they are related Wy/dz)M (z) = 2C(x).
signal is controlled by an internal signal which vanishes 8S\\le assume that the Hill surface which relates the user's
the control objective is achieved.

force F(t) to the position and the velocity of the exercise
In our approach, instead of modifying the strength of t ®) PosH v 'y xerel

o . .Mmotion, when the effort and the fatigue state of the user are
excitation, we require the user to perform two types of Veloc'?’onstam is given by
fields, the “training” velocity field and the estimated optimal '
velocity field. These are time multiplexed together, and the Fi(z, ) := a(z) — b(z)d; a(z), b(z) > 0.  (2)
relative frequency of their application is modulated in such a
manner that the “training” velocity field will be infrequently Notice that the Hill surface is affine in, and decreases monoton-
applied as the Hill surface becomes well known. To implemepia|ly with, the velocity of motiona(z) andb(z) are arbitrary
this idea, a control structure which is both hierarchical angntinuous functions of and are assumed to be unknoan
hybrid (i.e., discrete and continuous dynamics interact) jjori.
proposed. At the lower level, @ontinuous-stateadaptive ~ The overall objective is to enable the user to exercise in

version of the dynamic damping controller in [1] is constructeg manner that maximizes, at all times, the weighted human
which is capable of causing the user to execute any specifiggyer:

velocity field, despite uncertainty in the Hill surface. At the

higher level, adiscrete-statesupervisor generates a reference J,(F, &) = Fi’ with p > 0 3)
velocity field by switching between the “training” velocity

field and the estimated optimal velocity field. The decisiosubject to the constraint that the force, position and velocity
to switch between them is made discretely, based on are related by the Hill surface, i.e.,

optimality error signal which monitors the convergence of the

parameter estimates, as well as the instances when the user’s F(t) = Fp(z(t), ©(t)).

Hill surface may have varied. The discrete supervisor can

either bedeterministicor probabilistic. For the deterministic Therefore, the user must exercise according to adpémal
case, the exercise velocity converges after, at most, a finitesired velocity field given by

number of training phases to a velocity field close to the

optimal one, with assignable closeness. In the probabilistic V*(z) = P @_ (4)

case, it is shown that the velocity converges asymptotically to p+1b(z)

the optimal velocity field with almost certainty. ) )
The remainder of this paper is organized as follows. I Other words, the motor torqug(t) in (1) must be manip-

Section 1l, we briefly review the exercise machine contrdflated so thati(t) — V*(x(t)).
problem and present additional preliminary background neces-

sary to develop the self-optimizing control system. In Sectidh Linear Parameterization of the Unknown Functions

lll, an adaptive version of the dynamic damping controller is |n order to estimate the unknown function&e) and b(x)

presented. In Section 1V, we describe the reference generaipkhe Hill surface in (2), they are linearly parameterized via
and the combined result of the adaptive controller and thg integral representation of the first kind.

reference generator. Experimental results are given in Section sufficiently smooth functiork: G x G — R is a symmetric
V. Section VI contains concluding remarks. kernel with a finite eigen function expansion iz, o) =
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k(o, x) Yz, 0 € G and if there exist)1(-), - -+, ¥n(-): G — vectorc(o) and the parameter vect@r are unknowra priori,

R, and ¢y, -+, (v € R such that since they depend on the effort and fatigue state of the user and
must be identified. In actual implementation of the estimation

/ k(z, o)pi(o) do = (pi() algorithm to be presented, it is more convenient to use the

¢ integral representation directly (i.e., the influence function

/ VT (0)U(o)do = Iy vector c(o) is directly estimated). However, the equivalent

Y finite-dimensional vector parameterization (i.e., in terms of

k(z, o) = U(z)ZV" () © e R?N) is more convenient in presenting the analysis.

Z = diag (¢1, -+, (v) We use only the more familiar finite dimensional vector

5) parameterization in the remainder of the paper.

where U(-) = [th1(), -+, ¥ ()] C. Force Observer

of he user, the human force s gven by the il Suface fg . uman foree(£) in (1) cannot generaly e measured,
@), ie F(t’) = Fu(a(t), i(t)), with a(z) € [a(z), o) and Qvgn_with a force sensor, unless invasive techniques are used.
b(a:,) .e.fb(x) sz)]h Whe;ea(a:), b(z), b(z) > 0. ’ Thls_ is b_ecauseF(t) is th_e generalized fprce that actuates all
More(;ver7a ) g " §R+_can, . répresented by an integr tlhe inertia componer_wts in the system, including the limbs of
equation of'tr;e 'f'rst kind 1121 &he user. For the estimation of the unknown parameter vector
quat : ind [12]: © in (9), we shall utilize a force observer to obtaif(t),

{a(w)} _ / Kz, o) {c“(a)}da ©) which is the stable filtered output @f(¢), using only position
G

b(x) a(o) and velocity measurements
where ¢,(-) and ¢,(-) are squared integrable, ard G x A
G: — R is a symmetric kernel with a finite eigen function F) = A+ s £(t) A>0. (11)

expansion. Furthermore, the vector function G — %2,
c(x) = [ea(0), cp(0)]F lies in a convex setP., so that
a(z) € [a(x), 0o) andb(z) € [b(z), b(x)].

The functionsk(-, -) and ¢, (-) and ¢,(-) are referred to as . A
the kernel and tht(e inzluence §u)nctions,( r)espectively. Typically, Ft) =AM (2)d ~ Nt s r(t)
k(-, -) is assumed to be known ang(-), c;(-) are assumed to r(t) :=T(t) + Clx(t)a(t) + AM (z()x(t).  (12)
be unknown and have to be identified. Integral representations
have been found to be useful in functional adaptive arkhe filtered forceF(¢) is related to the unknown parameter
learning control [6], since they enable a wide class of nonlineggctor © in (9) by
functions to be parameterized linearly, while ensuring that the
estimates of these functions remain smooth.

The unknown Hill surfacel,(z, &) can now be linearly \ypere p(t) is the filtered regressor vector given by
parameterized in terms of a known regressor and an un-
known parameter. Define the functional regressors and the _ A

: : p(t) := P(1). (14)

corresponding vector regressor as follows: s+ A

SinceT(¢), M(z), andC(x) are known quantities, it can be
verified from (1) thatF(¢) can be computed by

F(t) = p(t)TO (13)

¢°(t,0) :==k(z(t), o)[1, —&()]"  VYoe€G (7) D. Dynamic Damping Controller
#(t) ::/ ¢°(t,0) @ U(o)do € R*N (8) A dynamic damping control law was designed in [1] to
g enable the user to perform an exercise specified by a desired

where ¥/(c) is the collection of eigen functions in (5) amd Vvelocity field V4 (x, t) > 0. It has the additional property that
denotes the Kronecker product. Define the parameter vecttite closed-loop exercise system interacts passively with the

by user to ensure that the machine is safe to operate. The con-
troller takes the position and velocity of the exercise motion
/ U (0)ca(0) do [z(t), £(¢)] as input and generates the motor generalized force
O := <z“> =17 (9) T(t) as the output. It takes the form
’ / UL (0)ce(0) do T i
g <M ; ) = —D(z, va, t)( ) (15)
Sincec(o) is constrained to lie in the convex s8¢, there is a 202 2
related convex set, denoted By C R*V, such that® € Ps.  \yherev, := (& v2)T € R2. In (15), vs is an internal state,
Therefore, itF(t) = Fy(x(t), &(t)), then and M, is a controller parameter. They can be interpreted as
. the velocity and the inertia of a fictitious flywheel (see [1] for
() = L ¢° (8, o) e(0) do = $(t)" O, (10) details).D(z, v,, t) € R?*? is a positive definite matrix and

) has the following structure (see [1, egs. (31)—(35)]):
In (10), the functional and vector regresserst, o) andé(t)

are assumed to be known, whereas the influence functioM(z, &, ve, t) = Dy(z, &, va, t) + Fy(z, )Bi(x, t) (16)
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whereD, (z, &, vs, t) is skew symmetricB, («, t) is positive USER
definite, and
Hill Purameter
Fy(x, t) = Fj(z, Vy(z, 1) = alz) = b(z)Vy(z, t)  (17) e estimate
. . . | r
is the force that the user would exertiif= V,(z, ¢). In this oo | Revrece [adaptive |7, [ Fvercive

eg. (32)], so that its off-diagonal elements are skew symmetric. £xitati
Let ¢,(t) € R2Y be a regressor vector defined by

- 1 . Fig. 1. Control scheme for a smart exercise machine.
800 = (Lyyiaey ) © [ ot o o 12)

then

paper, we assume that the matBx(z, ¢) is defined using [1, Generator " Controller Machine

position, velocity

The parameter estimate vect® is updated using the
Fy(z(t), t) = ¢, (t)TO. (19) following parameter adaptation algorithm (PAA), which is a

modification of the identifier proposed in [10]:
Given a desired velocity field/y(z, t) > 0, the dynamic

A~

damping controller is fully determined without the knowledge é(t) =11 Projg [-P()0(t) + d(t) + ¢,(t)er(t)] (21)
of the user’s Hill surface, except for the functidfy(x, ¢). P(t) = — AP(t) + p(t)p" (1) P(0) = 0 (22)
E. Self-Optimizing Control Strategy d(t) = = () + p(t) 7 (1), d(0)=0 (23)

The dynamic damping controller is, by itself, insufficienwheree;(t) := 2(t) — Va(z(t), t) is the velocity field tracking
to enable the user to exercise optimally. For this to happegffor, A > 0 is a forgetting factor,: > 0 is a gain constant,
the dependence on the knowledge of the user's Hill surfatie regressors,(t) and p(t) are defined in (14) and (18),
in (15) has to be removed, and a mechanism is necessary*i@) is the force observer output given by (12), and Brij
specify the desired velocity field so th&(z, t) — V*(x), the projection operator that makes sure tBatemains in the
where V*(x) is the optimal velocity field in (4) which i& convex setP, C RN, so that the Hill parameter estimates
priori unknown. a(zx, t), blx, t), obtained from®, satisfy a(x, t) > a(x),

To accomplish this objective, a control scheme which coh(z, t) € [b(z), b(x)], as specified irAssumption 1
sists of anadaptive controllerand a reference generator The key feature of this PAA is the existence of a computable
is proposed (Fig. 1). The reference generator commandsignal which is directly related to the parameter estimation
reference velocity field, and the adaptive controller makesror. Multiplying both sides of (22) by, we observe that
certain that it is faithfully executed. In turn, the adaptivd(¢)© and d(t) satisfy the same linear differential equation
controller passes to the reference generator the esti@e and initial conditions. Therefore, by the uniqueness of the
of the Hill surface parametép, which the reference generatorsolution of an ordinary differential equation (ODE),
uses to determine the reference velocity field. Intuitively, if
the parameter estimate generated by the adaptive controller is d(t) = P()® vt 2 0.
accurate, t_hen t_he reference generator will be :_alble to Comp*ﬂ?erefore, the parameter erréx(t) — O _ © satisfies
V*(x), which will then be tracked by the adaptive controller.
For this reason, the adaptive controller should, in addition P(HO(t) = P(t)6 — d(t). (24)
to making sure that the reference velocity field is executed, ) )
estimate the system parametédsaccurately. On the other This €nables us to obtain a direct measurement of the parame-
hand, to correctly identify, the reference velocity field mustter €rror®, whenever the matri(t) is invertible. Using this
contain sufficient information. Thus, the reference generaf@ict: (21) can be rewritten as
described in Section IV time multiplexes a “training” velocity A . ~
field, which provides the necessary excitation, with an estimate O(t) = 1 Projg[~P(1)O(t) + dy(t)es ()] (25)
of the optimal velocity field based on an estimate of the Hill Theorem 1: Suppose that for somE(z) > 0 and F(z) >
surface. As the estimate 6f improves, the “training” velocity ¢, the desired velocity field/,(xz, ¢) satisfies
field will be infrequently applied so that,(z, t) — V*(z)

a(x) — F(x)

in some sense. Vi) < Vy(z, t) < —=
b(x)

[ll. ADAPTIVE DYNAMIC DAMPING CONTROL _ _
Given the desired velocity field;(x, t), Fy(z, t) is the where o(z), b{x) are the bounds on the function¢z) and

only term in the dynamic damping controller (15) and (16 ,(x) in Assu_mption 1 . . .
tha¥ cannot be detirmined, sinF():e git depends (gn t)he unfmo)b rThe adaptive dynamic da”.‘p'”g controller (15) and (16) with
parameter vecto®. Using the certainty equivalence approac)‘ﬁ(d(x’ t) replaced byry(z, ¢) in (20) and©(t) updated by the

we replaceF,(z, t) given by (19) by its estimaté(z, ¢): AA In (21)~(23) has the fOHOW'_ng properties.
1) The closed-loop system with the human fotcét) as

. - .
Fa(x(t), 1(t)) = ¢dEt) o(t) (20) the input and the velocity:(¢) as the output is passive
whereg,(t) is defined in (18), an®(t) is the estimate 06. with respect to the supply rat&(¢)z(t).



252 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 2, NO. 4, DECEMBER 1997

2) Suppose that the user’s ford&(t) is given by a Hill Excitation Condition: Let p(¢) be the regressor function in
surface which satisfiesssumption 1Lete; (¢) := #(t)— (14), so that the force observer output#&t) = p(t)7'0.
Va(x(t), t). Then,ei(t) — 0. Thus, the user asymptot-There exists a constafif,,., > 0 and a continuous function
ically exercises according to the desired velocity field: ® — R with «(0) > 0 such that for anyly > 0, if
Valz, t). |2(t) — Va(x(t), t)| < eforall t € [To, To + Trax ], then

3) Letr(t) be the minimum eigenvalue @&(¢) in (22). If

To+Tmax
[ soer dr z @by, @)

t
/ r(1)dr — oo ast — oo Ty
0

Thus, if a training velocity fieldV**(z, t) satisfies the exci-
then©(t) — 0 ast — oo. tation condition, then, whenever the actual velocityracks
Proof: See Appendix |. Vi (z, t) sufficiently closely, the regresspfr) will spani?®

Notice that two types of error signals are used in (25 a f|n|_te time Tl?lax' Th's ensures that there is _sufficient
for adaptation, the “prediction” error sign@(¢)®() and information contained in the force observer outpkif-) to
the “output” error signale;(t) = @(t) — Va(z(t), t). The reconstruct the unknown parameter -
former, which is furnished by the force observer outfit), S_urnce the Hil surfac_:e IS affine in the _\/glocmy at.eac.h
is statically related to the parameter erédrwhereas the latter position.z, it ShO.UI.d be |.nt.umve that the trammg velocity f|.e.Id
is only related to® through the dynamics of the system. Thgnust at Ieas_t_ visit sufficiently then ttwo d|ff(_erent _velocmes
result in Theorem 1that ¢; — 0 can be attributed to the at eaCh positiore. In the following, V/ r(x.’.t) is defined 1o
“output” error and can be achieved using a simpler PAA, su&?nS'St of alternatel)_/ .tWO constant velocitidg;g, and Vi,
as a gradient PAA. However, the use of the “prediction erro}[’"th a smooth transition between them. Hence,
and the filtered gain matrix update law (22) is key to item 3)
in Theorem 11In particular, as will be shown in Section IV,
this result enables the parameter error to vanish asymptoticall N
under a less restrictive condition for the regressor vegtoy wxere Vaign T> _ Viow > 0- The weighting vectorL(t) =
than the so-callegersistence of excitatiocondition [13]. [L1(t), L2(t)]" is determined by

Vtr(xv t) = Ll (t)‘/high + LQ(t)‘/low (28)

d
—(fi :—AL@) Pl A>0. (29)
IV. REFERENCE GENERATOR dt \ L2 2

The adaptive controller in Section Ill enables the user to
exercise as specified by the desired velocity figldz, ¢), (1 O)T, if ¢ mod (T3 +1T3) < T}
despite uncertainty ify(z(t), t) in (17). There is still the p(t) = { (0 1)T if + mod (11 + 1) > Th
remaining problem of specifyin§y(z, t) to be the optimal ’ -
velocity profile (4). Unfortunately, the adaptive controller itselivhere 71 > 2n7/Vien and o > 2n7/View, andn > 1
cannot guarantee thad(t) — ©. Therefore, the optimal (chosen to be 3 in the implementation) is the number of
velocity field estimate cycles the exercise motion must go through before the desired
velocity is switched froml4,;zp t0 Viow OF vice versa.

The training velocity field, as defined above, indeed satisfies
the excitation condition.

Proposition 1: If Viigh > View > 0 and Ap in (29) is
sufficiently large, then the training velocity fieltl* (z, ¢)
defined in (28)—(30) satisfies the excitation condition with

=T+ 15.

Proof: See [14].

(30)

V(e 1y = £ UnD) (26)

computed based on the parameter estintate) does not
necessarily converge t0*(z).

To resolve this difficulty, we now design a reference gener#**
ator which specifie§;(z, ¢) by time multiplexing an estimate
of the optimal velocity field and a training velocity field
V¥ (z, t). The latter provides sufficient excitation so tht B. Excitation Supervisor
can be identified. A binary state machine, called the excitation o . . . . .

. . : . The excitation supervisor is a binary-state machine which

supervisor, determines which of the two types of velocng . .
. . . ; witches between theontrol  andtrain  states based on
fields will be chosen, based on an error sigag)(t), which

monitors the accuracy of the estimated parameters Switchthe event symbolgo_control ~ or gotrain , as shown in
y P . 'l-ni% 2. Roughly speaking, an estimate of the optimal velocity

is performed in such a way that t_he training velocity field 'ﬁeld is selected when the statecisntrol , and the “training”
chosen less frequently as the estimateSoimproves. velocity field is selected when the state tiain . The

N o transition times7;, &k € Z will be defined subsequently.
A. Training Velocity Field Denote the state beforE, by

To qualify as a training velocity profile, the velocity field .
V' (z, t) must satisfy the following excitation condition. qr—1 € {control, train}.
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go_train

Fig. 2. Excitation supervisor state diagram.

go_control wherer(¢) denotes the minimum eigenvalue Bf¢t) in (22),
; go_control andT,,.x anda(e) are, respectively, the time interval and the
scalar function in the lower bound in (27).
Moreover, ifk — oo, then the parameter err@(t) — 0
ast — oo.
Proof: See Appendix II. [ |
Proposition 2 states that if the training velocity field is
chosen infinitely many times, the®(t) — 0. This does
go train not, however, preclude the training velocity field from being
selected at a vanishing frequency.
The proof ofProposition 2gives immediately the following
result.

Set the first transition time to BB,—, = 0, and initialize the ~ Lemma 1: For 7}, sufficiently large, ifg;,_, = train, the
state of the supervisor tg.—o = train. After each subsequentmatrix P(7},), whereP(.) is given by (22), is invertible.

transition time7, the following events take place. The conditions thatl;; and 7;, are sufficiently large in
1) The state changes fromy_; — ¢ based on the Proposition 2andLemma lare satisfied if the tracking error
transition event symbol issued. These events will ba(t) = () — Va(z(t), t) is sufficiently small, as guaranteed
specified later. by Theorem 1In implementation, this is attained very quickly,
2) The estimate of the optimal velocity field is updated a&nd we can assume the condition®imposition 2andLemma
follows: 1 are satisfied ifj; > 1 andk > 1, respectively.
Vii(z) = {“;’“ (;( %k) :; sz _ zzzid C. State Transition

3)

4)

5)

We still need to specify how the transition events

WhereV*(a: T) is the estimate of the optimal velocity (go _train or go_control ) which trigger the state
field based on the parameter estim@iel}, ), as defined transitions should be issued. They will be determined from
in (26). Notice thatV*(a: T}) is updated only ifjx_, = the optimality error signat,,:(k), which we now define.
train. Let us denote the estimate of the objective function in (3)
The velocity field to be selected afté}, is given by at the velocityV, based on the parameter estimae by

V(g ¢ o , Jo(z, V, ), i.e., if © gives rise to the estimaté(z) and
Voo (e, £) = { (,8),  ge=train g or 0 andb(z) in (2), then

V(). if g = control
o et G
The reference velocity field/y(z, t) is defined to Jp@, V, 0) :=VPa(z) = b(z)V].

be the smooth interpolation betwedr{}'(x,t) and From (26), the estimate of the optimal value of the objective

Vo™ (z, ¢). This can be accomplished as followsfunction based on the parameter estiméteis denoted by
Define Vy(x, t) to be the value of a polynomial sphnej*(x @)

of sufficiently high order betweer/°}(z, ¢t) and

Vieom(z, t) over the period[Ty, T + 7] and to be Tz, ©) = p  alz) ! a(x)
V,fom(a:, t) for ¢t € (CTS’;), Tk+1]. When qx = Qx—1, NO P (]_ + p) lA)(.’IZ) 1+ p'
smoothing is necessary, so ttgk, = 0. . o ] .
Finally, the next transition tim@j., is chosen: Define the optimality error signal,,; at time 7} to be

T + Tax + TF if ¢ = train copt(k) = 7191(k) + g2(k), 71 >0 (32)
T = T TmaX . if gr = control

k1 L dwel, gx = contro where

wrgrereTmX is specified in the excitation condition wh|ch2( ||@( T;.) — P~Y(T)d(Ty)|1%, if gu_y = train
V¥ is assumed to satisfy, affQ.y is set to the amoun¥ ga(k — 1), otherwise
of time the exercise motion takes to complete= 3 (33)
turns. Notice thafl;, 13, -- - is an unbounded sequence.

The following Propositionstates that, if the transition sym-and gi(k) = 0 wheng,_; = Control, and it is

bol go_train is chosen infinitely many times, then the g1(k) = max |J}(x, @(t)) — J(z, Vi (2), @(t))| (34)
parameter estimates converge to the true parameters. 't

Proposition 2: Let {7}, ---,T;,} be a subsequence ofif gx—1 = Train, where the max is taken overe [T}_1, 1)
increasing transition times. Suppose that at edgh ¢ = andz € G. _ _
1, ---, k, the training velocity fieldV'** is chosen, then for The purpose ofg; (k) is to detect instances whef has
T;, large enough, there exists> 0, so that changed (e.g., due to changes in motivation or fatigue) by
checking if the current parameter estimat¥t) and the
= exp(_)‘ﬂnax) : H . . . g _
r(r)dr > key, ¢ = sa(0) (31) optimal velocity field estimate being specifi¢¢f_, are con
0 - A sistent. Its exact definition, however, is not critical to the
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theoretical result. Notice that, because l&dfmma 1 g»(k) 7 . :
in (33) is well defined after the velocity field tracking error o5l Control Gontrol Control |
e1(t) = & — Vy(z(t), t) is sufficiently small. This is ensured Train Train Train

by Theorem land is achieved very quickly in implementation. &
Moreover, from (24),g2(k) is, in fact, ||©(7})||?, whereT; 55
is the transition time after the previous training velocity field
has been selected. Therefore, it measures the convergence%’of;’
the parameter estimation error. _‘24_5,

The transition event can now be defined. Denote the trarg
sition event atl}, by S(k) € {go_train, go_control}. Two 32
methods are proposed to determine the transition events, ast
deterministicmethod and atochasticmethod:

Deterministic: ChooseA?26 > 0, so that if|©; — 6| < * U
A29, then the estimated optimal velocity fielfzg1 (z) and 251

LI

a4+

Vi, (x) are such thainax, |V (z) — Vg, (z)| < z where , ‘ ‘
z is some predefined tolerance for suboptimality. Define the ° 50 Tmensee | ° 150

transition event b
y Fig. 3. The reference velocity profilé;[x(t), t] alternates between training

S(k) _ { cont?rol, if Gopt(_k) < A29' (35) profiles (train) and estimated optimal profiles (control).
train, otherwise
Stochastic: Let w: [0, o) — R be a continuous non-
decreasing function withu(e) = 0 iff ¢ = 0. Define the of go_train  symbols occur. Thereafter, the user exercises
sequencely, k = 0, 1, --- to be an independent identicallyaccording to a velocity profile close to the optimal velocity
distributed (i.i.d.) random process with a uniform probabilitprofile. If the transition events are determined by the stochastic
density distribution between [0, 1]. Then, define the transitiohle, then, ast — oo, the probability that thego _train

event by symbol occurs vanishes, and the user performs the optimal
; exercise with almost certainty.
| go_control, if G > w(eopt(k)) S N : .
S(k) = {go_train, otherwise . (36) In application, the user’s Hill surface varies due to fatigue

) . _and other factors. By setting the parametgrén (32), A%6 in
Hence,go control  is more probable to occur oy (k) IS (35 anduw(.) in (36) appropriately, the excitation supervisor
small. _ o _ _can be made insensitive to small variation of the Hill surface,
The properties of the combination of the adaptive dampirg; s;ill be able to respond to sufficiently large changes in the

controller described in Section 1l and the reference generaigyfj| syrface by transitioning to thezain  state, so as to learn
described above are summarized in the following theorem.ihe new Hill surface.

Theorem 2: Assume that the user’s force satisfi®ssump-
tion 1, and letV*(z) in (4) be the true optimal velocity
field. V. EXPERIMENTAL RESULTS

lf, the trgnsition eventg i'n .the excitatign SUpervisor are e self-optimizing control strategy was implemented on
defined using the deterministic formula given by (35), thefie experimental setup described in [1]. The subject was
there exists an integer < oo such that j > r the following sty cted to exercise at a constant effort level. The mechanical

apply: power at each position in the exercise motion was to be
1) g; = control; maximized [i.e.,J, in (3) with p = 1]. The stochastic formula
2) copt(d); ma1(4), 92(4) < A%6; in (36) was used to determine the state transitions in the
3) there exists a continuous functie(t), such that reference generator.
l5() = V*(2(t), )] < 2+ e(t) As shown in Fig. 3, the desired velocity field;(z(¢), t)

. - consisted of the training velocity fields which are alternate
where z is 2th_e tolerance for suboptimality used t0.).<iant velocities Vg = 6 radis andVie, = 2.5 rad/s
determineA”d in (35), ande(t) — 0 ast — oc. and the estimated optimal velocity fields. Notice also that

If the transition events are defined using the stochastige training velocity field was less frequently applied as the
formula given by (36), then ak — oo, the following apply: experiment progresses, indicating that the control system was

1) with probability onecopi(k), g1(k), g2(k) — 0; becoming confident of its estimate of the subject’s Hill surface.
2) the probability thaty;, = control tends to 1; From Fig. 4, where the actual velocity and the desired velocity
3) Jex: ¥ — N, andex(¢) — 0, such that are plotted, we see that the control was able to cause the subject

. . X . to execute the desired profile during both tren  state and
tll{glo Prob{&(t) = V*(x(t), )] < e2(t)} = 1. the control  state.
Proof: See Appendix . [ | We now investigate whether the Hill surface was identified
Theorem 2states that, when the transition events are deerrectly. We have experimentally verified that the force
termined by the deterministic rule, only a finite numbeobserver outputF(¢) was a good estimate of the user’s force
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F(¢). Thi§ result was expe(;ted, sinégt) was slowly varying. VI. CONCLUSIONS

Thus, usingF(t) as an estimate of the user’s foré¥t¢), the ) o o
actual Hill surface and the on-line estimates (approximately!n this paper, we presented an intelligent, self-optimizing
att = 40, t = 65, ¢ = 110, and¢ = 130 s) at four control system for a class of exercise machines. The control
positions are plotted in Fig. 5. Notice that the actual data ag¥sStem optimizes the user's workout by causing the user to
the estimates agree. An off-line least-square fit was generapé(@rcise according to a velocity field that optimizes a modified
for the force—velocity relation at each position. The resultingower criterion, dependent on the unknown user's biome-
off-line estimates of the Hill parameter&x) and b(.’L’) were chanical behavior—the Hill surface. Based on the dynamiC
compared to the on-line estimates obtained at the secdt@inping controller developed in [1], we developed an adaptive
instance when theontrol  was entered (at ~ 70 s). controller which eliminates the need to know the Hill surface
Notice that, in Fig. 6, the off-line estimate and the on-linéf the user beforehand. Since adaptive control alone does
estimate are also very similar. The Hill surfaces reconstructe@t guarantee that the unknown parameters are accurately
using the off-line estimates and the on-line estimates of thdentified, we also developed a reference generator to specify
Hill parameters are also very similar (Fig. 7). As shown ia desired velocity field which allows both the identification of
Fig. 8, the velocity at which the exercise was performed duririge Hill surface (and, hence, the identification of the optimal
the control  state also follows the optimal velocity fieldexercise for the usegndthe eventual execution of the optimal
computed based on the off-line estimate of the Hill surfacexercise. We achieve this by switching between the tasks of

as desired. tracking the optimal velocity field and of training the control
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Strength: Nm

Strength: Nm

Velocity: raqs
(b)

Fig. 7. Off-line and online estimates of the Hill surface. (a) Off-line estimate. (b) On-line estimate.

system to learn the Hill surface. The overall control scheme
was implemented, and the experimental results verified the 3 : —
system’s ability to obtain good estimates of the user’s Hill

surface and to cause the user to perform an exercise that
maximizes the mechanical power output. A generalization of

7

oo L 26|
the self-optimizing control strategy to other situations can be z
found in [2]. 25t
Q
o |
APPENDIX | 24
PROOF OF THEOREM 1 :
1) Following the proof ofTheorem 2n [1], the 1/O system 3'_;
is passive if the matribD(z, v,, t) is positive definite, 2“’ . ‘ ‘ ‘ .
which, in turn, is true ifFy(z, t)Va(z, t) > 0. Indeed, 0 1 % bosivon: rad 5 6
Fy(z, t)Vy(z, t) > 0 because
Fig. 8. Off-line computed optimal velocity profile (solid line) and achieved

Ey(x, t) = alx, t) — bz, H)Valz, t), velocity profiles (dots).
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a(z, t) > 0 and b(x, t) € [b, b] as guaranteed by ther” Py (t)r + rZPy(t)r + --- + TPy (t)r, we haver(t) :
parameter projection algorithm, and(z, t) < a/b by min cigP(t) > Ele ri(t).

Assumption 1 We will computer;(t) for ¢t > Tji 4+ 19} 4 Tiax. Let
Let W(t) be the Lyapunov function used in the proot ¢ %2V be an arbitrary vector. Let; = T + TSJZ and
of Theorem 2in [1] which has the property thatp, — Tji + Tg}; + Tmax. By computing ;(b;) using the
W(t) > $M(z)ei. Following the same proof, with convolution formula, we obtain

Fy(z, t) substituted byF,(z, ¢) and using the fact that
Fy(z, t)Vy(z, t) > FV, we obtain

rI'P; (bi)r = exp(—ATmax)

b

W(t) < —aW(#)+er()[F ) —pat)TOW@)], a= % - / 7_ exp[N(7 — ap)|r? p;(1)p; () v dr
where E is the constant defined in [1, eq. (13)]. Using > exp(—\Toma) /bi 2 p, (7)py () & dr
the fact thati"(t) = ¢,(1)7'© — b(x(t))e1(t), we obtain ai

3)

Z exp(—)\Tmax)Oé(ﬁ) ||I‘||2

W(t) < —aW (1) = b(a(t))es(t)? — er(t)a(t) O(D). > exp(= A )60 (0)| |||

Define a new Lyapunov function given by . N .
The last two inequalities result from (27) and the fact that if

T;1 is sufficiently large|e;(7)| < e wheree is small. Thus,

ri(b;) > 6 exp(—ATmax)(0) = X - ¢1.

Wit) == W(t) + i AT ().

Differentiating with respect to time, making use of
(25), and the property of the projection [13] tha‘z
OTProj,[s] < ©%'s, we obtain
Wi(t) < — aW(t) = e1¢4(t)70 — O()"
(t

[[P(1O(t) — palt)er ()]
< —aW(t) — 6)TP(H)O(t).

ort > b;, we apply the transition function for the dynamics
of P; and obtainVt > b; = Ti + 17, 4+ Tinax
r:(t) > exp[—=A(t — b;)]Acq.
(37)
(38) Integrating the above and using the fact that)
Ele r;(t), we obtain the desired result:
Standard Lyapunov and Barbalat's lemma arguments N
show thati¥(¢) — 0, from whiche; (¢) — 0 is obtained. = ~ [
By the definition ofr(t) and (38) /0 r(r)dr = z_; / - () dr 2 ke
As k — oo, [;°r(T)dr — oo. So, by item 3) inTheorem
1, & — 0.

2

Wi(t) < —aW () - r(@®)l[O@)|*.

Let o(t) = min[a, 2ur(t)], thenWy(t) < —a(H)W1(t)
and, therefore,

Wi (t) < W(0) exp [— /0 t o(7) df}.

Because the dynamics &(¢) given in (22) is a stable
linear filter with bounded inputy(¢) is bounded. It is
easy to show that, since(t) is bounded, andv > 0,
[3 #(r)dr — oo implies that [ o(7)dr — oo. The
latter, in turn, shows thad#’; (t) — 0. ©(t) — 0 follows.

APPENDIX Il
PROOF OF THEOREM 2

To establishTheorem 2we need the following lemma.

Lemma 2: Let A = A;, A,, --- be an independent, iden-
tically distributed (i.i.d.) random process with; € {0, 1}.
Suppose thaProb(A4; = 1) > p > 0, Yk. Then,

Prob(A having only a finite number of 1js= 0.

Proof: Note thatProb(4; = 0) := ¢; < (1 —-p) < L
For any finitek > 0, the joint probability ofAd; =0 for j > k
is given by

APPENDIX Il
PROOF OF PROPOSITION 2

Because of the tracking property of the adaptive controll

(Theorem }, for eache > 0, there is dl;; sufficiently large, so
thatV¢ > 151, |ei(t)| < e whereey () = @(t) — Va(xz(t), t). If
Va(z(t), t) = V¥(z(t), t), then, sincen(-) in the excitation
condition in (27) is continuous, there exisis> 0, so that
a(lei(t)]) > 6a(0) for all ¢ > Tj;.

Jn Mgy < Jim (1=p)"70 = 0.

]
Proof of Theorem 2:Consider first the deterministic case.

We shall prove that,,: (k) < A26 for k sufficiently large.

Let P,(¢) be the solution to (22) witp(¢) replaced by, (¢),
the truncation ofp(t) to [T}; +
Va(x(t), t) = V™ (x(t), t). Thus,

Let ;(¢t) be the minimum eigenvalue dP;(t). Using the

Suppose not, thedn; < ne < ng--- — oo, such that
Copt(Ni) > A%6, and, so, the training task is chosen infinitely
often. By Proposition 2 fot r(1)dr — oo. This would imply
(using Theorem 1 conclusion 3) tha@(Tk) — 0 ask — ooc.
g1(k), g2(k) and eqp; Would, therefore, have to converge
to 0, extracting a contradiction. Hence,,:(k) is ultimately

3!

spo T]Z + TSJ; + ﬂ1lax] when

Pi(t) = =APi(t) +p,(p,(07,  Pi(0) = 0.

linearity of (22) and the fact that for anye %Y, r"P(¢)r > bounded byAZ?4.
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Let x be an integer such that(7}) < A20¥E > k and
j be the largest integer such that< x and S(; — 1) =
go_train. Then, fork > x, S(k) = go_control  and
g(k) = g2(j) = ||OT)|* < A?6. Fort > T.1, since
Va(a(t), 1) = Vi (z(1)

|(t) = V(@) < V] (@) = VI (@)| + () — Va(z(t), 1)
<z+le(®)

where|e;(t)| = |&(¢) — Va(z(t), t)] — 0 by Theorem 1 g

Next, we consider the probabilistic case. For any realizatioff]
for which e (k) # 0, ez > 0 and an integer sequence
n1 < ng < ng--- — 00, sUCh thaieg,, (n;) > ea. At eachn;, 7]
the probability that the training phase is applied is positive.
Thus, byLemma 2 the probability that only a finite number [
of training phases are applied is zero. On the other hand, if
an infinite number of training phases are applied (this occuri]
with probability one), byProposition 2 ||6(t)||> — 0. Thus,
eopt — 0. This would contradict, with probability one, that[10]
Copt 72 0. Hence,eqp (k), 91(k), g2(k) — 0 with probability
one.

Assume thate.pc (k) — 0. Thus, the estimated optimal
velocity fieldV;* converges to the true optima,* . Moreover,
ProldS(k) = go_control] tends to one asymptotically. Thus,[13]
ast — oo, the probability thatV;(z(¢), t) = V,;*(z(t)) tends
to one. ByTheorem 13es: ® — R, es(t) — 0, such that [14]
|2(t) — Va(z(t), t)] £ es(t). Therefore, ask — oo and
t € [Ty, Tx+1], the probability that

[(t) = V()] < eslt) + Vg, ((8) = V()]
= Gg(t)

(1]
(2]
(3]
(4]

[11]
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