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Control of Smart Exercise Machines—Part II:
Self-Optimizing Control

Perry Y. Li, Member, IEEE, and Roberto Horowitz,Member, IEEE

Abstract—This is the second part of a two-part paper on
the design of an intelligent controller for a class of exercise
machines. The control objective is to cause the user to exercise in a
manner that optimizes a criterion related to the user’s mechanical
power. The optimal exercise strategy is determined by ana
priori unknown biomechanical behavior, called the Hill surface,
of the individual user. Consequently, the control scheme must
simultaneously: 1) identify the user’s biomechanical behavior;
2) optimize the controller; and 3) stabilize the system to the
estimated optimal states. In Part I of this paper, a dynamic
damping controller was proposed which satisfies the safety re-
quirement and is capable of causing the user to execute an
arbitrary exercise strategy if the user’s biomechanical behavior
is known. In this second part of the paper, we address the self-
optimization problem in which both the determination and the
eventual execution of the optimal exercise strategy are accom-
plished, when the user’s biomechanical behavior is unknown.
This is achieved by a combination of an adaptive controller and
a reference generator. The latter switches the desired exercise
strategy between a training strategy and the estimated optimal
strategy. Depending on the switching scheme chosen, it is shown
that, asymptotically, the user will either execute the optimal
exercise with probability one or operate close to it. Experimental
results of the overall system verify the efficacy of the design.

Index Terms—Adaptive control, biomechanics, hybrid systems,
intelligent control, passivity, robotics, self optimization, velocity
field control.

I. INTRODUCTION

T HIS PAPER and the companion paper [1] are concerned
with the formulation, analysis, and implementation of

intelligent exercise machine control systems to enable indi-
vidual users to exercise optimally. In this control problem,
which is formulated in [1], the biomechanical behavior of the
user with respect to the exercise machine is modeled by a
Hill surface relating the force that the user can exert to the
position and velocity of the exercising motion. Each exercise
strategy can, therefore, be encoded by a velocity field on
the configuration space of the machine and corresponds to a
trajectory on the Hill surface of the user. The control objective
is to manipulate the assistive/resistive force on the exercise
machine, so that the user exercises according to the optimal
velocity field specific to the user’s Hill surface. A typical
optimal exercise would maximize the user’s mechanical power

Manuscript received February 22, 1997; revised September 2, 1997.
Recommended by Guest Editor H. Kobayashi.

P. Y. Li is with the Department of Mechanical Engineering, University of
Minnesota, Minneapolis, MN 55455 USA (e-mail: pli@me.umn.edu).

R. Horowitz is with the Department of Mechanical Engineering,
University of California, Berkeley, CA 94720-1740 USA (e-mail:
horowitz@me.berkeley.edu).

Publisher Item Identifier S 1083-4435(97)09031-5.

output throughout the exercise motion. To ensure that the
exercise machine is safe to operate, the closed-loop control
system is also constrained to interact passively with the user.
To this end, a dynamic damping controller was proposed in [1]
which satisfies this closed-loop passivity requirement and, if
the user’s Hill surface is known, is capable of causing the user
to execute an arbitrarilyspecifiedvelocity field. In particular,
if the optimal velocity field is specified, then the user would
perform the optimal exercise.

Unfortunately, the Hill surface is generally unknowna
priori , since it is both user specific and varies with the user’s
motivation and fatigue state during the exercise session. Thus,
the dynamic damping controller in [1] is inadequate in causing
the user to execute the optimal velocity field, nor can the
optimal velocity field be specified in the first place. The present
paper addresses these inadequacies by developing an adaptive
version of the dynamic damping controller and by designing a
reference velocity field generator, so that the optimal velocity
field can be ultimately specified.

The problem at hand belongs to the class of “self-optimizing
control” problems [2] in which a plant with somea priori
unknown parameters is required to perform an optimal task
with respect to a performance index. In our present problem,
the user must execute the optimal velocity field specific to
his/her Hill surface, despite the fact that the Hill surface
is unknown a priori. The main difference between a self-
optimizing control problem and a typical adaptive or learning
control problem lies in the fact that, since the optimal task
generally depends on the unknown plant parameters, it cannot
be explicitly specified beforehand and has to be determined on-
line. Indeed, without knowledge of the plant, it may not even
be possible to decide if the plant is, in fact, operating optimally.
In contrast, in a typical adaptive or learning control problem
(e.g., [3]–[6] and others), the task (such as following a given
trajectory) is explicitly specifieda priori, and the objective is
to perform this task with good precision in the presence of
parametric and nonparametric uncertainties in the plant and
environment dynamics. If the optimal task can be specified
explicitly, then one may develop an adaptive controller to
enable that task to be performed. Typically, the estimates of
the plant parameters do not even have to converge to the true
ones. In fact, vanishing of parameter estimation error seldom
occurs in direct adaptive control schemes.

The basic difficulty in the present problem is that, in order
to determine the optimal velocity field, one has to have an
adequate knowledge of the user’s Hill surface. This requires
the user to exercise in a manner that explores the different
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regions of the Hill surface. In other words, the exercise
must be sufficiently exciting. On the other hand, the optimal
exercise which we would like the user to perform is not
sufficiently exciting. Hence, a conflict exists between the
objectives of exercising optimally and of identification. This
conflict is the essence of thedual control problem posed in
[7]. This difficulty is illustrated by a result in adaptive linear
quadratic (LQ) control which states that the set of controller
parameters which induce optimality is a thin set in the set
of all possible convergence points [8]. Hence, it is not likely
that the controller will converge to the optimal controller. The
(static) extremum control problem, where the optimal output
is to be achieved for an unknown plant, was considered in
[9]. In [9], the estimated optimal input is updated on-line
and is superimposed with a dither signal before it is applied.
Because of the dither, the input signal never really optimizes
the objective criterion. Intuitively, if changes of the plant
characteristics or the badness of the parameter estimates can be
detected, the dithering or the excitation signal can be applied
only at those instances. A similar idea in adaptive control can
be found in [10] and [11], where the strength of an excitation
signal is controlled by an internal signal which vanishes as
the control objective is achieved.

In our approach, instead of modifying the strength of the
excitation, we require the user to perform two types of velocity
fields, the “training” velocity field and the estimated optimal
velocity field. These are time multiplexed together, and the
relative frequency of their application is modulated in such a
manner that the “training” velocity field will be infrequently
applied as the Hill surface becomes well known. To implement
this idea, a control structure which is both hierarchical and
hybrid (i.e., discrete and continuous dynamics interact) is
proposed. At the lower level, acontinuous-stateadaptive
version of the dynamic damping controller in [1] is constructed
which is capable of causing the user to execute any specified
velocity field, despite uncertainty in the Hill surface. At the
higher level, adiscrete-statesupervisor generates a reference
velocity field by switching between the “training” velocity
field and the estimated optimal velocity field. The decision
to switch between them is made discretely, based on an
optimality error signal which monitors the convergence of the
parameter estimates, as well as the instances when the user’s
Hill surface may have varied. The discrete supervisor can
either bedeterministicor probabilistic. For the deterministic
case, the exercise velocity converges after, at most, a finite
number of training phases to a velocity field close to the
optimal one, with assignable closeness. In the probabilistic
case, it is shown that the velocity converges asymptotically to
the optimal velocity field with almost certainty.

The remainder of this paper is organized as follows. In
Section II, we briefly review the exercise machine control
problem and present additional preliminary background neces-
sary to develop the self-optimizing control system. In Section
III, an adaptive version of the dynamic damping controller is
presented. In Section IV, we describe the reference generator
and the combined result of the adaptive controller and the
reference generator. Experimental results are given in Section
V. Section VI contains concluding remarks.

II. BACKGROUND

A. Control Problem Review

The single-degree-of-freedom experimental exercise ma-
chine used in our research was described in [1]. It consists of
a rigid link connected to a dc motor at one end and is attached
to a handle at the other. The user exercises by rotating the link
while holding the handle. The motor provides for the resistive
or assistive force to cause the user to execute the desired
exercise strategy. The configuration space of this system is
the circle , so that is the angle of the rigid
link with respect to a reference angle. The dynamics of this
setup are given by

(1)

where is the generalized force (torque) generated by
the user, and is the torque generated by the motor,
which is the manipulated control variable. is the
generalized inertia and is the Coriolis and centripetal
force, and they are related by .

We assume that the Hill surface which relates the user’s
force to the position and the velocity of the exercise
motion, when the effort and the fatigue state of the user are
constant, is given by

(2)

Notice that the Hill surface is affine in, and decreases monoton-
ically with, the velocity of motion. and are arbitrary
continuous functions of and are assumed to be unknowna
priori .

The overall objective is to enable the user to exercise in
a manner that maximizes, at all times, the weighted human
power:

with (3)

subject to the constraint that the force, position and velocity
are related by the Hill surface, i.e.,

Therefore, the user must exercise according to theoptimal
desired velocity field given by

(4)

In other words, the motor torque in (1) must be manip-
ulated so that .

B. Linear Parameterization of the Unknown Functions

In order to estimate the unknown functions and
of the Hill surface in (2), they are linearly parameterized via
an integral representation of the first kind.

A sufficiently smooth function is a symmetric
kernel with a finite eigen function expansion if
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and if there exist
, and such that

(5)

where .
Assumption 1:For a given effort level and fatigue state

of the user, the human force is given by the Hill surface in
(2), i.e., , with and

, where , , .
Moreover, can be represented by an integral

equation of the first kind [12]:

(6)

where and are squared integrable, and
is a symmetric kernel with a finite eigen function

expansion. Furthermore, the vector function ,
lies in a convex set , so that

and .
The functions and and are referred to as

the kernel and the influence functions, respectively. Typically,
is assumed to be known and are assumed to

be unknown and have to be identified. Integral representations
have been found to be useful in functional adaptive and
learning control [6], since they enable a wide class of nonlinear
functions to be parameterized linearly, while ensuring that the
estimates of these functions remain smooth.

The unknown Hill surface can now be linearly
parameterized in terms of a known regressor and an un-
known parameter. Define the functional regressors and the
corresponding vector regressor as follows:

(7)

(8)

where is the collection of eigen functions in (5) and
denotes the Kronecker product. Define the parameter vectors
by

(9)

Since is constrained to lie in the convex set, there is a
related convex set, denoted by , such that .

Therefore, if , then

(10)

In (10), the functional and vector regressors and
are assumed to be known, whereas the influence function

vector and the parameter vector are unknowna priori,
since they depend on the effort and fatigue state of the user and
must be identified. In actual implementation of the estimation
algorithm to be presented, it is more convenient to use the
integral representation directly (i.e., the influence function
vector is directly estimated). However, the equivalent
finite-dimensional vector parameterization (i.e., in terms of

) is more convenient in presenting the analysis.
We use only the more familiar finite dimensional vector
parameterization in the remainder of the paper.

C. Force Observer

The human force in (1) cannot generally be measured,
even with a force sensor, unless invasive techniques are used.
This is because is the generalized force that actuates all
the inertia components in the system, including the limbs of
the user. For the estimation of the unknown parameter vector

in (9), we shall utilize a force observer to obtain ,
which is the stable filtered output of , using only position
and velocity measurements

(11)

Since , , and are known quantities, it can be
verified from (1) that can be computed by

(12)

The filtered force is related to the unknown parameter
vector in (9) by

(13)

where is the filtered regressor vector given by

(14)

D. Dynamic Damping Controller

A dynamic damping control law was designed in [1] to
enable the user to perform an exercise specified by a desired
velocity field . It has the additional property that
the closed-loop exercise system interacts passively with the
user to ensure that the machine is safe to operate. The con-
troller takes the position and velocity of the exercise motion

as input and generates the motor generalized force
as the output. It takes the form

(15)

where . In (15), is an internal state,
and is a controller parameter. They can be interpreted as
the velocity and the inertia of a fictitious flywheel (see [1] for
details). is a positive definite matrix and
has the following structure (see [1, eqs. (31)–(35)]):

(16)
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where is skew symmetric, is positive
definite, and

(17)

is the force that the user would exert if . In this
paper, we assume that the matrix is defined using [1,
eq. (32)], so that its off-diagonal elements are skew symmetric.
Let be a regressor vector defined by

(18)

then

(19)

Given a desired velocity field , the dynamic
damping controller is fully determined without the knowledge
of the user’s Hill surface, except for the function .

E. Self-Optimizing Control Strategy

The dynamic damping controller is, by itself, insufficient
to enable the user to exercise optimally. For this to happen,
the dependence on the knowledge of the user’s Hill surface
in (15) has to be removed, and a mechanism is necessary to
specify the desired velocity field so that ,
where is the optimal velocity field in (4) which isa
priori unknown.

To accomplish this objective, a control scheme which con-
sists of an adaptive controller and a reference generator
is proposed (Fig. 1). The reference generator commands a
reference velocity field, and the adaptive controller makes
certain that it is faithfully executed. In turn, the adaptive
controller passes to the reference generator the estimate
of the Hill surface parameter, which the reference generator
uses to determine the reference velocity field. Intuitively, if
the parameter estimate generated by the adaptive controller is
accurate, then the reference generator will be able to compute

, which will then be tracked by the adaptive controller.
For this reason, the adaptive controller should, in addition
to making sure that the reference velocity field is executed,
estimate the system parametersaccurately. On the other
hand, to correctly identify , the reference velocity field must
contain sufficient information. Thus, the reference generator
described in Section IV time multiplexes a “training” velocity
field, which provides the necessary excitation, with an estimate
of the optimal velocity field based on an estimate of the Hill
surface. As the estimate of improves, the “training” velocity
field will be infrequently applied so that
in some sense.

III. A DAPTIVE DYNAMIC DAMPING CONTROL

Given the desired velocity field , is the
only term in the dynamic damping controller (15) and (16),
that cannot be determined, since it depends on the unknown
parameter vector . Using the certainty equivalence approach,
we replace given by (19) by its estimate :

(20)

where is defined in (18), and is the estimate of .

Fig. 1. Control scheme for a smart exercise machine.

The parameter estimate vector is updated using the
following parameter adaptation algorithm (PAA), which is a
modification of the identifier proposed in [10]:

(21)

(22)

(23)

where is the velocity field tracking
error, is a forgetting factor, is a gain constant,
the regressors and are defined in (14) and (18),

is the force observer output given by (12), and Projis
the projection operator that makes sure thatremains in the
convex set , so that the Hill parameter estimates

, , obtained from , satisfy ,
, as specified inAssumption 1.

The key feature of this PAA is the existence of a computable
signal which is directly related to the parameter estimation
error. Multiplying both sides of (22) by , we observe that

and satisfy the same linear differential equation
and initial conditions. Therefore, by the uniqueness of the
solution of an ordinary differential equation (ODE),

Therefore, the parameter error satisfies

(24)

This enables us to obtain a direct measurement of the parame-
ter error , whenever the matrix is invertible. Using this
fact, (21) can be rewritten as

(25)

Theorem 1: Suppose that for some and
, the desired velocity field satisfies

where are the bounds on the functions and
in Assumption 1.

The adaptive dynamic damping controller (15) and (16) with
replaced by in (20) and updated by the

PAA in (21)–(23) has the following properties.

1) The closed-loop system with the human force as
the input and the velocity as the output is passive
with respect to the supply rate .
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2) Suppose that the user’s force is given by a Hill
surface which satisfiesAssumption 1. Let

. Then, . Thus, the user asymptot-
ically exercises according to the desired velocity field

.
3) Let be the minimum eigenvalue of in (22). If

as

then as .

Proof: See Appendix I.
Notice that two types of error signals are used in (25)

for adaptation, the “prediction” error signal and
the “output” error signal . The
former, which is furnished by the force observer output ,
is statically related to the parameter error, whereas the latter
is only related to through the dynamics of the system. The
result in Theorem 1that can be attributed to the
“output” error and can be achieved using a simpler PAA, such
as a gradient PAA. However, the use of the “prediction error”
and the filtered gain matrix update law (22) is key to item 3)
in Theorem 1. In particular, as will be shown in Section IV,
this result enables the parameter error to vanish asymptotically
under a less restrictive condition for the regressor vector
than the so-calledpersistence of excitationcondition [13].

IV. REFERENCEGENERATOR

The adaptive controller in Section III enables the user to
exercise as specified by the desired velocity field ,
despite uncertainty in in (17). There is still the
remaining problem of specifying to be the optimal
velocity profile (4). Unfortunately, the adaptive controller itself
cannot guarantee that . Therefore, the optimal
velocity field estimate

(26)

computed based on the parameter estimate does not
necessarily converge to .

To resolve this difficulty, we now design a reference gener-
ator which specifies by time multiplexing an estimate
of the optimal velocity field and a training velocity field

. The latter provides sufficient excitation so that
can be identified. A binary state machine, called the excitation
supervisor, determines which of the two types of velocity
fields will be chosen, based on an error signal , which
monitors the accuracy of the estimated parameters. Switching
is performed in such a way that the training velocity field is
chosen less frequently as the estimate ofimproves.

A. Training Velocity Field

To qualify as a training velocity profile, the velocity field
must satisfy the following excitation condition.

Excitation Condition: Let be the regressor function in
(14), so that the force observer output is .
There exists a constant and a continuous function

with such that for any , if
for all , then

(27)

Thus, if a training velocity field satisfies the exci-
tation condition, then, whenever the actual velocitytracks

sufficiently closely, the regressor will span
in a finite time . This ensures that there is sufficient
information contained in the force observer output to
reconstruct the unknown parameter.

Since the Hill surface is affine in the velocity at each
position , it should be intuitive that the training velocity field
must at least visit sufficiently often two different velocities
at each position . In the following, is defined to
consist of alternately two constant velocities, and ,
with a smooth transition between them. Hence,

(28)

where . The weighting vector
is determined by

(29)

if mod
if mod

(30)

where and , and
(chosen to be 3 in the implementation) is the number of
cycles the exercise motion must go through before the desired
velocity is switched from to or vice versa.

The training velocity field, as defined above, indeed satisfies
the excitation condition.

Proposition 1: If and in (29) is
sufficiently large, then the training velocity field
defined in (28)–(30) satisfies the excitation condition with

.
Proof: See [14].

B. Excitation Supervisor

The excitation supervisor is a binary-state machine which
switches between thecontrol and train states based on
the event symbolsgo control or go train , as shown in
Fig. 2. Roughly speaking, an estimate of the optimal velocity
field is selected when the state iscontrol , and the “training”
velocity field is selected when the state istrain . The
transition times , will be defined subsequently.
Denote the state before by
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Fig. 2. Excitation supervisor state diagram.

Set the first transition time to be , and initialize the
state of the supervisor to . After each subsequent
transition time , the following events take place.

1) The state changes from based on the
transition event symbol issued. These events will be
specified later.

2) The estimate of the optimal velocity field is updated as
follows:

if
if

where is the estimate of the optimal velocity
field based on the parameter estimate , as defined
in (26). Notice that is updated only if

.
3) The velocity field to be selected after is given by

if
if

4) The reference velocity field is defined to
be the smooth interpolation between and

. This can be accomplished as follows.
Define to be the value of a polynomial spline
of sufficiently high order between and

over the period and to be
for . When , no

smoothing is necessary, so that .
5) Finally, the next transition time is chosen:

if
if

where is specified in the excitation condition which
is assumed to satisfy, and is set to the amount

of time the exercise motion takes to complete
turns. Notice that is an unbounded sequence.

The following Propositionstates that, if the transition sym-
bol go train is chosen infinitely many times, then the
parameter estimates converge to the true parameters.

Proposition 2: Let be a subsequence of
increasing transition times. Suppose that at each,

, the training velocity field is chosen, then for
large enough, there exists , so that

(31)

where denotes the minimum eigenvalue of in (22),
and and are, respectively, the time interval and the
scalar function in the lower bound in (27).

Moreover, if , then the parameter error
as .

Proof: See Appendix II.
Proposition 2 states that if the training velocity field is

chosen infinitely many times, then . This does
not, however, preclude the training velocity field from being
selected at a vanishing frequency.

The proof ofProposition 2gives immediately the following
result.

Lemma 1: For sufficiently large, if , the
matrix , where is given by (22), is invertible.

The conditions that and are sufficiently large in
Proposition 2and Lemma 1are satisfied if the tracking error

is sufficiently small, as guaranteed
by Theorem 1. In implementation, this is attained very quickly,
and we can assume the conditions inProposition 2andLemma
1 are satisfied if and , respectively.

C. State Transition

We still need to specify how the transition events
(go train or go control ) which trigger the state
transitions should be issued. They will be determined from
the optimality error signal , which we now define.

Let us denote the estimate of the objective function in (3)
at the velocity , based on the parameter estimate, by

, i.e., if gives rise to the estimate and
of and in (2), then

From (26), the estimate of the optimal value of the objective
function based on the parameter estimateis denoted by

:

Define the optimality error signal at time to be

(32)

where

if
otherwise

(33)

and when , and it is

(34)

if , where the max is taken over
and .

The purpose of is to detect instances when has
changed (e.g., due to changes in motivation or fatigue) by
checking if the current parameter estimate and the
optimal velocity field estimate being specified are con-
sistent. Its exact definition, however, is not critical to the
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theoretical result. Notice that, because ofLemma 1,
in (33) is well defined after the velocity field tracking error

is sufficiently small. This is ensured
by Theorem 1and is achieved very quickly in implementation.
Moreover, from (24), is, in fact, , where
is the transition time after the previous training velocity field
has been selected. Therefore, it measures the convergence of
the parameter estimation error.

The transition event can now be defined. Denote the tran-
sition event at by . Two
methods are proposed to determine the transition events, a
deterministicmethod and astochasticmethod:

Deterministic: Choose , so that if
, then the estimated optimal velocity field and

are such that where
is some predefined tolerance for suboptimality. Define the

transition event by

if
otherwise

(35)

Stochastic: Let be a continuous non-
decreasing function with iff . Define the
sequence to be an independent identically
distributed (i.i.d.) random process with a uniform probability
density distribution between [0, 1]. Then, define the transition
event by

if
otherwise

(36)

Hence,go control is more probable to occur if is
small.

The properties of the combination of the adaptive damping
controller described in Section III and the reference generator
described above are summarized in the following theorem.

Theorem 2: Assume that the user’s force satisfiesAssump-
tion 1, and let in (4) be the true optimal velocity
field.

If the transition events in the excitation supervisor are
defined using the deterministic formula given by (35), then
there exists an integer such that the following
apply:

1) ;
2) ;
3) there exists a continuous function , such that

where is the tolerance for suboptimality used to
determine in (35), and as .

If the transition events are defined using the stochastic
formula given by (36), then as , the following apply:

1) with probability one, ;
2) the probability that tends to 1;
3) , and , such that

Prob

Proof: See Appendix III.
Theorem 2states that, when the transition events are de-

termined by the deterministic rule, only a finite number

Fig. 3. The reference velocity profileVd[x(t); t] alternates between training
profiles (train) and estimated optimal profiles (control).

of go train symbols occur. Thereafter, the user exercises
according to a velocity profile close to the optimal velocity
profile. If the transition events are determined by the stochastic
rule, then, as , the probability that thego train
symbol occurs vanishes, and the user performs the optimal
exercise with almost certainty.

In application, the user’s Hill surface varies due to fatigue
and other factors. By setting the parametersin (32), in
(35), and in (36) appropriately, the excitation supervisor
can be made insensitive to small variation of the Hill surface,
but still be able to respond to sufficiently large changes in the
Hill surface by transitioning to thetrain state, so as to learn
the new Hill surface.

V. EXPERIMENTAL RESULTS

The self-optimizing control strategy was implemented on
the experimental setup described in [1]. The subject was
instructed to exercise at a constant effort level. The mechanical
power at each position in the exercise motion was to be
maximized [i.e., in (3) with ]. The stochastic formula
in (36) was used to determine the state transitions in the
reference generator.

As shown in Fig. 3, the desired velocity field
consisted of the training velocity fields which are alternate
constant velocities at rad/s and rad/s
and the estimated optimal velocity fields. Notice also that
the training velocity field was less frequently applied as the
experiment progresses, indicating that the control system was
becoming confident of its estimate of the subject’s Hill surface.
From Fig. 4, where the actual velocity and the desired velocity
are plotted, we see that the control was able to cause the subject
to execute the desired profile during both thetrain state and
the control state.

We now investigate whether the Hill surface was identified
correctly. We have experimentally verified that the force
observer output was a good estimate of the user’s force
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Fig. 4. Reference and actual velocity versus time.

Fig. 5. Force versus velocity and estimated Hill curves at four positions.

. This result was expected, since was slowly varying.
Thus, using as an estimate of the user’s force , the
actual Hill surface and the on-line estimates (approximately
at , , , and s) at four
positions are plotted in Fig. 5. Notice that the actual data and
the estimates agree. An off-line least-square fit was generated
for the force–velocity relation at each position. The resulting
off-line estimates of the Hill parameters and were
compared to the on-line estimates obtained at the second
instance when thecontrol was entered (at s).
Notice that, in Fig. 6, the off-line estimate and the on-line
estimate are also very similar. The Hill surfaces reconstructed
using the off-line estimates and the on-line estimates of the
Hill parameters are also very similar (Fig. 7). As shown in
Fig. 8, the velocity at which the exercise was performed during
the control state also follows the optimal velocity field
computed based on the off-line estimate of the Hill surface,
as desired.

(a)

(b)

Fig. 6. Off-line and on-line estimates of the Hill parameters. (a) Estimates
of a(x). (b) Estimates ofb(x).

VI. CONCLUSIONS

In this paper, we presented an intelligent, self-optimizing
control system for a class of exercise machines. The control
system optimizes the user’s workout by causing the user to
exercise according to a velocity field that optimizes a modified
power criterion, dependent on the unknown user’s biome-
chanical behavior—the Hill surface. Based on the dynamic
damping controller developed in [1], we developed an adaptive
controller which eliminates the need to know the Hill surface
of the user beforehand. Since adaptive control alone does
not guarantee that the unknown parameters are accurately
identified, we also developed a reference generator to specify
a desired velocity field which allows both the identification of
the Hill surface (and, hence, the identification of the optimal
exercise for the user)andthe eventual execution of the optimal
exercise. We achieve this by switching between the tasks of
tracking the optimal velocity field and of training the control
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(a)

(b)

Fig. 7. Off-line and online estimates of the Hill surface. (a) Off-line estimate. (b) On-line estimate.

system to learn the Hill surface. The overall control scheme
was implemented, and the experimental results verified the
system’s ability to obtain good estimates of the user’s Hill
surface and to cause the user to perform an exercise that
maximizes the mechanical power output. A generalization of
the self-optimizing control strategy to other situations can be
found in [2].

APPENDIX I
PROOF OF THEOREM 1

1) Following the proof ofTheorem 2in [1], the I/O system
is passive if the matrix is positive definite,
which, in turn, is true if . Indeed,

because
Fig. 8. Off-line computed optimal velocity profile (solid line) and achieved
velocity profiles (dots).
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and as guaranteed by the
parameter projection algorithm, and by
Assumption 1.

2) Let be the Lyapunov function used in the proof
of Theorem 2 in [1] which has the property that

. Following the same proof, with
substituted by and using the fact that

, we obtain

where is the constant defined in [1, eq. (13)]. Using
the fact that , we obtain

Define a new Lyapunov function given by

Differentiating with respect to time, making use of
(25), and the property of the projection [13] that

, we obtain

(37)

(38)

Standard Lyapunov and Barbalat’s lemma arguments
show that , from which is obtained.

3) By the definition of and (38)

Let , then
and, therefore,

Because the dynamics of given in (22) is a stable
linear filter with bounded input, is bounded. It is
easy to show that, since is bounded, and ,

implies that . The
latter, in turn, shows that . follows.

APPENDIX II
PROOF OF PROPOSITION 2

Because of the tracking property of the adaptive controller
(Theorem 1), for each , there is a sufficiently large, so
that , where . If

, then, since in the excitation
condition in (27) is continuous, there exists , so that

for all .
Let be the solution to (22) with replaced by ,

the truncation of to when
. Thus,

Let be the minimum eigenvalue of . Using the
linearity of (22) and the fact that for any ,

, we have
.

We will compute for . Let
be an arbitrary vector. Let and

. By computing using the
convolution formula, we obtain

The last two inequalities result from (27) and the fact that if
is sufficiently large, where is small. Thus,

For , we apply the transition function for the dynamics
of and obtain

Integrating the above and using the fact that
, we obtain the desired result:

As , . So, by item 3) inTheorem
1, .

APPENDIX III
PROOF OF THEOREM 2

To establishTheorem 2, we need the following lemma.
Lemma 2: Let be an independent, iden-

tically distributed (i.i.d.) random process with .
Suppose that . Then,

having only a finite number of 1’s 0

Proof: Note that .
For any finite , the joint probability of for
is given by

Proof of Theorem 2:Consider first the deterministic case.
We shall prove that for sufficiently large.
Suppose not, then , such that

, and, so, the training task is chosen infinitely
often. By Proposition 2, . This would imply
(using Theorem 1, conclusion 3) that as .

, and would, therefore, have to converge
to 0, extracting a contradiction. Hence, is ultimately
bounded by .
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Let be an integer such that and
be the largest integer such that and

. Then, for , go control and
. For , since

where by Theorem 1.
Next, we consider the probabilistic case. For any realization

for which , and an integer sequence
, such that . At each ,

the probability that the training phase is applied is positive.
Thus, byLemma 2, the probability that only a finite number
of training phases are applied is zero. On the other hand, if
an infinite number of training phases are applied (this occurs
with probability one), byProposition 2, . Thus,

. This would contradict, with probability one, that
. Hence, with probability

one.
Assume that . Thus, the estimated optimal

velocity field converges to the true optimal, . Moreover,
Prob tends to one asymptotically. Thus,
as , the probability that tends
to one. By Theorem 1, , , such that

. Therefore, as and
, the probability that

tends to one, where is the estimated optimal veloc-

ity field based on and is the last instance before
that the supervisor switches fromtrain to control . Since

[because ] and , .
The desired result is, therefore, obtained, since
with probability one.
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