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A b s t r a c t .  The control of a one degree of freedom exercise machine is considered. The 
control objective consists in making the human user exercise in a manner that maxi- 
mizes his consumption of power. The optimality condition is determined by the muscle 
mechanics which is assumed to satisfy a force-position-velocity relationship. In gen- 
eral, the parameters of this relationship are unknown and vary with the configuration 
of the exercise machine. As a consequence, the control scheme must simultaneously i) 
identify the user's strength characteristic, ii) optimize the controller, and iii) stabilize 
the system to the estimated optimal state. In this paper we present control systems 
in the form of a nonlinear dynamic or static dampers that make the controlled system 
interact passively with the user. Adaptive and self-optimizing control strategies are 
discussed, which achieve the control objectives described above. Results of a clinical 
study are presented which corroborate many of the assumptions used in this paper 
and verify the efficacy of the proposed control schemes. 

K e y w o r d s .  adaptive control, self-optimization, dual control, robotics, passivity, 
biomechanics, motion control. 

1. INTRODUCTION 

In this paper we discuss the controller design, imple- 
mentation and experimental verification of a new class 
of self-optimizing exercise machines that are capable of 
providing the user with an optimal workout. These con- 
trol systems achieve this objective by: i) identifying the 
strength characteristics of its user; ii) determining the 
optimal exercise routine for that particular user; iii) con- 
trolling the exercise machine so that the user actually 
performs the optimal workout and iv) interacting safely 
with the user by imposing that the direction of net en- 
ergy flow is always from the user to the exercise machine. 
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The type of exercise machines that are consider in this 
paper are those whose resistance is based on dampers; 
whose motion consists of a single degree of freedom, 
repetitive motion and whose objective is to provide the 
user with a cardiovascular workout and caloric consump- 
tion. The control objective consists in maximizing the 
instantaneous power produced by the user at all times 
during the exercise workout, for a given user constant 
effort level. In other words, the machine will attempt to 
make the user consume the maximum possible amount 
of calories, for a given effort level, by the end of the 
workout. We will call this type of exercise regime an 
opti-poteric workout 4 

To successfully design a control system that satisfies all 
of the above requirements, several mechatronics issues 

4 From the roots opti- meaning maximum, and poter- which is 
late latin for power. 
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must be addressed. The first is how to effectively de- 
scribe the task that  must be executed by the exercise 
machine. Traditionally, robot manipulation and many 
other mechatronic tasks are specified by parameterizing 
the desired state or output of the system as a function 
of time. However, in the case of exercise machines, opti- 
poteric workouts are best represented as desired velocity 
fields, i.e. the assignment of a desired velocity for every 
position in the configuration space of the exercise ma- 
chine. As a consequence, the control task will consist in 
tracking an optimal velocity field. 

A second issue concerns the safety of the user. To guar- 
antee that  the direction of net energy flow is always 
from the user to the exercise machine, we will impose 
that  the exercise machine remains closed loop passive 
with respect to the input /output  pair formed by the 
generalized forces provided by the user and the general- 
ized velocity of the exercise machine. Passivity is a well 
known property of a class of dynamic systems, which has 
been extensively used in the design of adaptive and non- 
adaptive control systems for mechatronic devices, cf. 
(Slotine and Li, 1991; ZODIAC, 1996). However, most 
so-called passivity based control systems do not preserve 
under feedback control the passivity of the control sys- 
tems with respect to the input /output  pair formed by 
the external inputs and the system output. In this paper 
we will utilize the passive velocity field control approach, 
originally introduced in (Li and Horowitz, 1995), to for- 
mulate a controller that  tracks a prescribed velocity field 
and maintains the closed loop passivity of the exercise 
machine with respect to the external forces provided by 
the user (Li and Horowitz, 1997a). This controller has 
the additional advantage that  it can be implemented 
using only passive mechanical elements such as a linear 
spring and a set of four adjustable dampers. Unfortu- 
nately, most exercise machines on the market today are 
equipped with only static dampers, and the complete 
passive velocity field control scheme cannot be imple- 
mented with only one static damper. To account for 
this limitation, we will also present a simplified velocity 
field tracking control scheme that  only utilizes a static 
damper, at the expense of sacrificing perfect tracking 
(Shields and Horowitz, 1997). 

The third issue that  must be accounted for in the con- 
trol system design for a smart  exercise machine is the 
fact that  the opti-poteric velocity field is a function 
of the user's biomechanics, which may not be known 
a-priori. Thus, the smart  exercise machine controller 
must be capable of identifying the user's biomechan- 
ics characteristics, in order to subsequently determine 
th opti-poteric desired velocity field, which the exercise 
machine must track. Because the desired velocity field 
cannot be defined a-priori, since it depends on the un- 
known user's biomechanics which may vary as the user 
fatigues, the control system has to be able to decide 
when it must identify the user's biomechanics and when 

it should track its estimate of the opti-poteric desired ve- 
locity field. This problem was first considered in (Li and 
Horowitz, 1997b), and a self optimizing control strategy 
was formulated and implemented to solve it. 

In order to satisfy all of the design constraints discussed 
above, the control schemes that  are presented in this pa- 
per are formulated using the following design method- 
ology: (1) A controller capable of causing the user to 
exercise according to an arbitrary velocity profile is first 
developed, assuming that the user's muscular biome- 
chanic characteristics are known. The closed loop system 
is constrained to be passive, in order to satisfy safety re- 
quirements. (2) A certainty equivalence adaptive control 
scheme, based on the controller developed in step 1, is 
then formulated to identify the user's muscular biome- 
chanic characteristics and control the exercise system. 
(3) A self-optimizing supervisor automaton, which con- 
sists of a reference generator and a finite state machine 
supervisor, is then constructed to guarantee that  an ac- 
curate optimal velocity field is determined and followed 
by the adaptive controller developed in step 2. Due to 
space constraints, we will not discuss in detail the self- 
optimizing strategy in step 3 in this paper. Interested 
readers are referred to (Li and Horowitz, 1997b). 

In section 2 we briefly discuss several biomechanic fac- 
tors that  affect the performance of a user during an exer- 
cise and formulate the self-optimizing exercise machine 
control problem. Section 3 describes the formulation of a 
dynamic damping control scheme which guarantees the 
closed loop passivity of the exercise system and tracks an 
arbritrary velocity field, assuming that  the human forces 
are known. A simplified static damping control scheme, 
which guarantees under similar assumptions closed loop 
passivity and the ultimate boundedness of the velocity 
field tracking error is described in section 4. Section 5 de- 
scribes the formulation of certainty equivalence adaptive 
controllers which identify the unknown human Hill sur- 
face force-velocity-position relation, and achieve track- 
ing of an arbitrary velocity field. Section 6 briefly de- 
scribes a self-optimizing strategy for simultaneous iden- 
tification of the Hill surface strength parameters and 
the optimal velocity field. Results of a clinical study are 
presented in section 7 that verified the effectiveness of 
the proposed control strategy in identifying the opti- 
mal velocity field and controlling the exercise machine 
to achieve an optimal workout. Conclusions are given in 
section 8. 

2. BIOMECHANICS AND PROBLEM 
FORMULATION 

The most important factors that  affect the force that  a 
muscle exerts on the exercise machine are (McMahon, 
1984; Lieber, 1992): (1) The user's effort level: Muscle 
activation is under voluntary control and to a lesser ex- 
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tent depends on the reflexes. (P) The exerise machine's 
configuration: As the configuration of the exercise ma- 
chine varies, the leverages that  the muscle forces have 
on the machine changes. The net effect is that  the gen- 
eralized force exerted by the user on the exercise ma- 
chine depends nonlinearly on the generalized position of 
the exercise motion. (3) The velocity of motion: It  has 
been found empirically that  for a given level of electrical 
stimulation, the force produced by a muscle decreases 
monotonically with the rate of shortening of the mus- 
cle (Hill, 1938). A hyperbolic relation has been found 
to be a good approximation of this relationship over 
a large range of velocities (Fig. 1). It  is believed that  
this is due to the asymmetric rate of cross-bridge at- 
tachment and detachment as the muscle shortens. (4) 

F(x) 

~(~) 

\ 
Hill  c u r v e  

Fig. 1. Force-velocity (Hill) relation of an activated mus- 
cle 

The user's fatigue level: The force exerted on the exer- 
cise machine decreases as the user fatigues, even under a 
constant effort level. The mechanism of fatigue is still an 
active area of research in muscle physiology. Most exer- 
cise motions involve more than one joint, and each joint 
is activated by more than one muscle. We shall group 
all the muscles that  actuate the exercise motion, and re- 
fer to them collectively as the equivalent muscle. For a 
given user effort level and fatigue State, the generalized 
force that  the equivalent muscle exerts on the exercise 
machine is a nonlinear function of position, and it de- 
creases monotonically with the velocity of the exercise 
motion. We will describe this characteristic by a gener- 
alized force-position-velocity relation (Fig. 2), which we 
will call the Hill surface, in honor or A. Hill (Hill, 1938) 
who first proposed the force-velocity relation for a single 
activated muscle shown in Fig. 1. 

Given the factors that  affect muscle force discussed above, 
it is possible to define the opti-poteric control strategy, 
which maximizes the instantaneous power generated by 
the user and takes into account some of these factors. 
Since the level of muscle activation (effort level) is vol- 
untary, we assume that  the user maintains a constant 
effort level while he exercises. As discussed in section 7, 
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Fig. 2. A typical Hill surface 

the user can be aided by bio-feedback methods or can 
be instructed and trained to exercise in this manner. 

We now define the instantaneous power generated by 
the user 

J(F,~)  = F ~ ,  (1) 

which is to be maximized. In (1), F and & are respec- 
tively the equivalent muscle's generalized force and the 
generalized velocity, which are related by the Hill (force- 
velocity) relation. Because of the monotonic property of 
the Hill relation, max J(-, .) exists at every instant of 
time. Hence an efficient exercise is achieved since (me- 
chanical) energy is being consumed at the maximum 
rate in this exercise. 

Without loss of generality, we assume that  the exercise 
motion has been designed and consists of a one degree of 
freedom repetitive movement. We will assume that  the 
configuration space G is the circle S 1. We also assume 
that  the resistive force to movement can be manipulated 
in real time. 

2.1 Arm Cranking Experimental Setup 

The experimental exercise machine that  was used in 
some of our research is schematically depicted in fig- 
ure 3. It consists of a NSK series 3 D.C. motor, which 

One link ~ (x, dxJdt) 
direct dl~,e robot [ f T ~  T 

Human User 

Computer 

Experimental Exercise machine setup 

Fig. 3. Experimental exercise machine setup. 
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is torque rated at 40Nm, and a 25cm long rigid link. A 
handle is mounted on the end of the link via a bearing. 
The user sits next to the setup and exercises by turning 
the one link robot while holding onto the handle. The 
rigid link, the forearm, the upperarm and the shoulder 
of the user are assumed to lie on the horizontal plane. 
In reality, the shoulder is generally approximately 10cm 
above the rigid link. The shoulder is assumed fixed so 
that  the kinematics is that  of a four-bar linkage. Since 
the elbow of the user is constrained, the angle of the 
rigid link relative to a point on the base of the motor 
specifies the configuration uniquely. 

The dynamics of the exercise system takes the form: 

M ( x ( t ) ) ~ ( t )  + C(x(t))ic2(t)  = F( t )  + T( t ) ,  (2) 

where M ( x )  E ~+ is the generalized inertia of the four 
bar linkage, C(x)~? 2 represents the Coriolis and cen- 
tripetal forces, F and T are the generalized forces gen- 
erated by the user's equivalent muscle and the motor 
respectively. We assume that  the function M(-) (and 
thus C(.)) is known. The inertia of the user's limbs 
can be found from regression curves developed from 
databases (e.g. (Zatsiorsky and Seluyanov, 1983)) or, al- 
ternatively, M(-) can be obtained from the short burst 
experiments similar to those conducted by (Lehman and 
Calhoun, 1990). 

In a multi-muscle actuated motion, the generalized forces 
of the muscles add ( ~ g  Fg) but the hyperbolic Hill force- 
velocity relation depicted in Fig 1 does not strictly hold 
for the total force. In our application, we use an affine 
approximation of the hyperbolic relation for each muscle 
group. When the affine approximation is derived for the 
overall force, the processes of taking the linear approx- 
imation and of adding the forces over multiple muscle 
groups commute. Thus, we make the assumption that  
for an effort level and a fatigue state, the total equiva- 
lent muscle force F in Eq. (2) is given by, 

F = Fh(x,  5c) = a(x) - b(x)ic, (3) 

where the argument x in the positive functions a(-) and 
b(.) expresses the dependence of the force-velocity curves 
on the geometry of the muscle with respect to the con- 
figuration of the exercise motion. Both a(-) and b(.) gen- 
erally depend on the effort level and the fatigue state of 
the muscle. 

Assuming that  (3) is satisfied, the optimal condition at 
each x is given by: 

1 a(x) F*(x)  = a(x) 
V*(x)  = ~ b(x---~' T (4) 

The control objectives are the following: 

(1) Cause the velocity k to follow the optimal velocity 
field V*, i.e. ~?(t) --* V*(x( t ) ) .  

(2) Since the exercise machine is to interact with the 
user mechanically, we also require, for safety reasons, 

that the controlled exercise machine behave passively 
with respect to the user, so that  the user will not absorb 
more energy than what he / she puts in. By this we 
mean that the velocity x, and the user's force F( t )  must 
satisfy the following passivity relation, 

' t  

foF(~)~(~)d~ > (5) ~ 6 2  

for all t > 0 and any human force F(~-). 

3. DYNAMIC DAMPING CONTROL 

In this section, we develop a passive controller assum- 
ing that the human force F in Eq. (2) is known. This 
assumption will be removed in section 5.3, when a cer- 
tainty equivalence adaptive controller is introduced. As 
shown in (Li, 1995), it is not possible to design a static 
damping controller which will track an arbitrary desired 
velocity field and make the closed loop exercise control 
system passive with respect to the user. The basic dif- 
ficulty lies on the fact that the amount of power that a 
static damping controller can manipulate is limited by 
the instantaneous power supplied by the user while ex- 
ecuting the desired exercise. Thus, to achieve both the 
tracking and passivity objectives simultaneously, it is 
necessary to design a dynamic passive controller, using 
the velocity field design methodology introduced in (Li 
and Horowitz, 1995). The basic idea is to incorporate in 
the control structure the dynamics of an energy storage 
element which mimics either a spring or a flywheel. The 
controller is constructed in two steps. First, we ignore 
the interaction with the user, and construct a passive 
velocity field controller capable of tracking the desired 
velocity field when sufficient energy is stored in the sys- 
tem. Secondly, the interaction with the user is taken 
into account by designing a damper that  dissipates all 
the power supplied by the user when the exercise closed 
loop system is tracking the desired velocity field. 

3.1 Passive Velocity Field Control 

As discussed above, in order to design a controller which 
is capable of tracking an arbritary desired velocity field 
and make the closed loop exercise control system passive 
with respect to the user, it is necessary to introduced in 
the control structure an additional energy storage el- 
ement. For the purpose of formulating the control al- 
gorithm, it is convenient to think of this element as a 
fictitious flywheel, with dynamics given by 

M f ~  = TS, (6) 

where M I and v I are respectively interpretated as the 
inertia and angular velocity of the flywheel. The control 
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Tf will be determined subsequently, as part  of the con- 
trol law for the augmented system. Alternatively, one 
can think of 1/M I as the stiffness coefficient of a me- 
chanical spring and of v! as the compressive force in the 
spring. This realization is convenient for implementing 
the control law using only passive mechanical elements, 
as will be detailed in section 3.3. 

Combining the exercise machine control system dynam- 
ics given by (2) and the dynamics of a fictitious flywheel 
results in the dynamics of an augmented mechanical sys- 
tem which is given by 

M~(x)v~ + Ca(x, 2)v~ = T~ + F a  (7) 

where 

' 0 (s) 

(;,) (0 T ~ =  Fa = , and v ~ =  vf ' 

The total energy of the augmented system is defined to 
be 

~(x ,v~)  = !v[M~(x)v~.  
2 

(9) 

We now define the augmented des i r ed  velocity field 
V~(x) given by 

vo( ,t) = (lo) 

where V(x, t) is the desired velocity which must be fol- 
lowed by the exercise machine control system (e.g. V(x, t) 
may be given by Eq. (4) if F = Fh and the functions a(x) 
and b(x) of the human force Fh in Eq. (3) are known). 
Vf(x,t) is the desired velocity field of the fictitous fly- 
wheel. Vf must be chosen such that  following conserva- 
tion of energy condition is satisfied: 

= 2V~(x,t)TMa(x)Va(x,t)  (11) 

for some constant E,  and for all x and t. By choosing 
E sufficiently large, Vi(x,t  ) can be chosen to be the 
positive root of (11) 

/ 

Vf(x,t) = \ /1 /MI{2-E-  M(x)V2(x,t)}. (12) 

In order to define the velocity field control law, it is 
convenient to define the augmented momentum of the 
system 

p~(x, t )=M~(x)v~,  

the augmented de s i r ed  momentun 

(13) 

P~(x, t) = M~(x)V~(x,  t) (14) 

and the augmented system's inverse dynamics, evalu- 
ated at the augmentd desired velocity field 

w~(x,t)  = M~V~(x, t )  + C~(x,~c)V~(x,t), (15) 

where Va(x, t) = ~ f c  + ov~x,t) .  The velocity field 
control law is given by 

where 

T~I = Q(x, v~, t) v~ 

is a skew-symmetric matrix, with 

1 
q(x, v~, t) = - ~  [M(x)MI(V(x, t)Vi(x, t) - Vi(x, t)V(x, t)) 

+ 

+~/M(x)Mf (V(x, t)vf - kV! (x, t)) 

and ~/> 0. Notice that  

o v aT~l  = = . 

Thus, the desired velocity field controller does not affect 
the overall energy level of the augmented system. 

The properties of the passive velocity field controller 
are summarized in (Li and Horowitz, 1995; Li, 1995). 
Loosely speaking, in the absence of an external force 
F, if the mechanical system has some initial energy, the 
closed loop system will have a velocity k which asymp- 
totically follows a multiple of the desired velocity field, 
i.e. ~(t) -~ ~V(x, t), where the constant/3 depends on 
the energy level of the system. 

3.2 Overall Dynamic Damping Control 

In order to track the desired velocity filed V even when 
the external human force F is acting on the system, we 
must introduce in the coupling control action an addi- 
tional control term that  dissipates all the energy sup- 
plied by the user. This term is given by 

To2 = - B ( x , t ) v ~ ,  (17) 

where B(x,  t) must be positive definite and 

B(x ,QVa(x , t )= (Fd(oX't) ) . (18) 

Fd(x,t) = Fh(x,V(x,t)) is the human force at the de- 
sired velocity. When (18) is satisfied, T~2(x, t) exactly 
cancells out ~he modeled human force when the actual 
velocity v~ is such that  v~ = Va. If Fd(x,t)V(x,t) > 0, 
then B(x,  t) can be chosen to be 

B ( x , t )  = & ( x , t )  (M(x)V(x,t) MfVf( ,t) . 
2-E k,-MfVf(x, t)  MfV(x , t )  ] (19) 
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Combining the dynamics of the fictitious flywheel in (6), 
the coupling control term Tal in (16) and the damping 
control term T~2 in (17), we obtain the following dy- 
namic damping controller: 

We = Tel  + T ~  = Mfi)f  \ f/~20) 

where 

R(x,  va, t )  = - Q ( x , v ~ , t ) + B ( x , t ) ,  (21) 

Q(x ,v~, t )  satisfies Eq. (16) and B(z , t )  satisfies Eq, 
(18). 

The closed loop dynamics, consisting of the dynamics of 
the exercise machine in Eq. (2) and that of the dynamic 
damping controller in Eq. (20), is now given by 

M~(x)v~ + C~(x,v~)v~ = -R (x , v~ , t )Va  + F~. 
(22) 

If the damping matrix B(x , t )  is chosen according to 
Eq. (19), the matrix R(x,  v~, t) in the resulting dynamic 
damping controller have skew symmetric off diagonal 
entries and is positive definite. 

Let us define the augmented velocity error e~ := (e,  ey) 
where e(t) := ~(t) - V ( x ( t ) , t )  and ey(t ) := vf(t) - 
V I (x(t), t). Define also the Lyapunov function 

W(x,  ea) l eTMa(x )ea  (23) 
:= 2 

The properties of the exercise machine under the control 
of the dynamic damping controller in (20) are given in 
the following theorem. 

Theorem 1. Suppose that the desired velocity field V(x, t) 
and a Hill relation Fh(x, ~:) satisfy Fh(x, 5c)V(x, t) > O. 
Consider the dynamic damping controller in (20) with 
Fd(X, t) in (18) given by Fd(x, t) ---- Fh(x, V(x, t)). The 
closed loop system given by (22) consisting of the ex- 
ercise machine given by (2) and this dynamic damping 
controller, has the following properties: 

(1) The closed loop system is passive with respect to 
the input /output  pair [F, 2] (i.e. Eq. (5) is staisfied for 
all t > 0 and any human force F). 

(2) There exists an a > 0 s.t. the Lyapunov function W 
in (23) satisfies 

I)V(t) <_ - a T ( t )  + e(t)(F(t) - Fd(x(t), t)), 
(24) 

with a = 2 min~,t Fa(x, t )V(x,  t). 

(3) If F(t) = Fh(X(t), 2(t)), then e~ --* 0 exponentially. 
Thus, k(t) -~ V(x(t),  t) as t --* c~. The convergence rate 
is at least 0.5a, where a is given in item 2. 

P roof :  See (Li and Horowitz, 1997b; Li, 1995). 

It is interesting to note that, the estimate of the con- 
vergence rate of e --* 0 is the minimum of the power 

generated by the human when moving along the desired 
velocity field. 

3.3 Controller Realization Using Mechanical Elements 

As detailed in (Li, 1995), the structure of the dynamic 
damping controller given by (20) has the advantage that 
it can be implemented using exclusively mechanically 
passive elements, without the need of a motor as in our 
experimental setup in Fig. 3. This can be accomplished 
by realizing the dynamics of the additional energy stor- 
age element in Eq. (6) as a mechanical spring instead of 
a fictitious flywheel. In this case / (  = ] /My becomes the 
spring constant and f = vf the spring force. An imple- 
mentation is shown in Fig. 4. It consists of the mechan- 
icM spring with spring constant K, and four variable 
dampers with damping coefficients dl (t), d2(t), d3(t) and 
d4(t). 

dl 

~T [ 

i 

Fig. 4. A realization of the dynamic damping controller 
using passive mechanical elements 

The dynamics of the realization shown in Fig. 4 is given 
by: 

(_;, 
where T is the force output of the device concentric 

to the motion and f is the compressive force of the 
spring. The off diagonal components of this matrix are 
skew symmetric and the matrix itself is positive definite 
for positive d l , " "  ,d4, as is R(t) in (20) if the matrix 
B(x , t )  is chosen according to Eq. (19). The reader is 
referred to (Li, 1995) for further details of the imple- 
mentation. 

4. STATIC DAMPING CONTROL 

The dynamic dymping control presented in the previ- 
ous section utilizes an energy storage element such as a 
spring or a flywheel. This is necessary to achieve both 
closed loop passivity and asymptotic tracking of an arbri- 
tary velocity field. The dynamic damping controller can 
be realized using a linear spring and four adjustable 
dampers, as was explained in section 3.3, and this avoids 
the use of potentially expensive active elements, such 
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DC motors, in the construction of the exercise machine. 
However, most exercise machines currently in the mar- 
ket are equipped with only one passive resistive element. 
In this section we present a control for exercise ma- 
chines which utilizes only one static damping element 
and can be more readily implemented in current ex- 
ercise machines. Unfortunately, this controller cannot 
achieve exact asymptotic tracking of arbritary velocity 
fields. However, we have found in our experimental stud- 
ies that  this simplified control scheme is able to maintain 
a fairly small tracking error, particularly when the iner- 
tia M(x)  of the exercise system is not large. This control 
has been implemented on a Precor 855e recumbent bi- 
cycle, as well as the arm exercise machine which was 
described in section 2.1. As in the previous section we 
will develop the static damping controller assuming that  
the human force F in Eq. (2) is known. This assumption 
will be removed in section 5.3. 

Consider again the exercise machine dynamics in Eq. 
(2), where F and T are respectively the generalized 
forces generated by the user's equivalent muscle and the 
controller. We now constrain the control to be a static 
damper of the form 

T(x, 2, t) = --Bd(x, t)~. (25) 

Assuming that  F is known and is given by (3), the damp- 
ing coefficient Bd(x, t) can be chosen so that  T(x, V(x, t), t) 
= Fd(x,t) = Fh(x,V(x, t ) ) .  I fV (x , t )  > OandFd(x,t) > 
0, Bd(x, t) can be selected as 

Bd(~, t) - Fd(~, t) _ ~(x) - b(~)V(~, t) 
v ( ~ , t )  v ( ~ , t )  (26) 

However, this control only achieves asymptotic tracking 
of the desired velocity if M(x),  a(x), b(z) and V(x, t )  
are constant, which is not the case on a typical exer- 
cise machine. To improve the control system's tracking 
performance, the following static damping control was 
proposed in (Shields, 1997; Shields and Horowitz, 1997) 

when e > 0, as there is no upper bound on the value 
of re(e) when the actual velocity, x, is too large. There 
may be instances were re(e) should be modified to in- 
crease the braking power, however, a symmetric re(e) 
is good for "comfort" reasons. Note that  the passivity 
constraint Bel l ( t )  > 0 also guarantees that  the control 
input will be non-positive, and that  ~ is non-negative. 
This can be proven with mild assumptions by consid- 
ering the solution to Eq. (2) with the input given by 
Eq. (27). 

The error dynamics of the closed loop system with re(e) 
chosen as in (28) can be written as: 

( ~ ( ~ )  ) 
M(x)~ + C ( x ) k e - -  - V(x, t )  +rn(e)& e (29) 

+ P ( x ,  ~, t) - M ( ~ ) V ( z ,  t) - C ( z ) ~ V ( ~ ,  t),  

where ~b = F(x, J:, t) - Fd(x, t). The following theorem 
establishes the boundedness of the tracking error. 

Theorem 2. Assume that: (i) the human force F(x, J:, t) 
0 is bounded, (ii) the desired velocity field is chosen such 

Then: that  0 < V(x, t)  < b(~)" 

(1) The closed loop system is passive with respect to 
the input /output  pair [F, k], 

(2) The velocity tracking error, e, associated with the 
error dynamics (29) satisfies, 

5 
le[-< X-:~,~' (30) 

where, 5 = Id(t)]~ < oo, Amen = mint A(t) > 0, and A(t) 
and d(t) are defined as, 

( a(~) \ 
~(t) := ) ~ v ( ~ , t )  + m(~)~_ (31) 

d(t) := F(x, ~, t) - M(x)V(x ,  t) - C(x)kV(x ,  t). 

T(x, ~, t) = - B e ~  (x, e, t)~ (27) 
Bo,f (x, e, t) = Bd(*, t) + m(~)e, 

where, Bd(x, V(x,  t), t) is given by (26), e = ~ - V(x, t) 
is the velocity tracking error and the function re(e) is 
chosen as 

Fd(~,t) (28) 
m(~) = v(x, t)I~1 + ~' 

where a > 0. 

The formula for re(e) given in (28) provides a symmet- 
ric tracking correction force about the e = 0 equilib- 
rium point, and assures that  B~yy(x , e, t) > 0 as long as 
Fd(x, t) > 0 and the desired velocity field is constraint 

a(~) In general only a fraction of the so that  V(x , t )  < b(~)" 
available braking power is used with the control (27) 

Proof :  See (Shields, 1997; Shields and Horowitz, 1997). 

Note that the user's isometric strength a(x) parameter  
enters into the error dynamics (29) via the linear stabi- 
lizing term. Thus, the static damper provides improved 
tracking performance when the subject is stronger. 

5. ADAPTIVE CONTROL 

Both the dynamic damping control law given by (20) 
and the static damping control law given by (27) are 
functions of the human force Fd(x, t). Fd(x, t) is the force 
that  the user would exert at the position x if the velocity 
of motion is as desired, i.e. k = V(x,  t). Given and arbi- 
trary desired velocity profile V(x,  t), the only unknown 
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factor in Eqs. (20) and (27) is Fd(z,t), since it depends 
on the unknown biomechanics of the user. If the affine 
force-velocity model for the user’s biomechanics given 
by Eq. (3) is an accurate model of the user’s force, then 
Fd(x, t) should be given by 

Fd(2, t) = Fh(2, V(Z, t)) = U(Z) - b(z)V(z, t). 

(32) 

5.1 Linear parametrization of the unknown functions u(x) 

and b(x) 

In order to estimate the unknown functions a(x) and 
b(x) in the linearized Hill model (3), we assume that 
these functions can be parameterized via an integral rep- 
resentation. 

Let k : g x 4 --+ iI? be sufficiently smooth, symmetric 
and has a finite eigenfunction expansion, i.e. there exists 

TLJl(.), . * * ,$JN(.) : g --+ R, St’. 

J k(x, ~)$ti(~)d~ = (‘i&(X), 
5 

i *T(u)Q(b)du = IN 

k(x, o) = !@(z)Z@(a), Z = diag([i, . . , (N), 

where <i > 0 and @(.) = [$I(.), . . , ‘$JN(‘)]. 

Assumption 1. For a given neural input, the muscle force 

is given by the Hill model in (3), with u(x) E [~(x),oo) 

and b(x) E [b(x),Z(x)], where a(x), b(x), b(x) > 0. 

Assume that a, b : g --) !I?+ can be represented by an 

integral equation of the first kind (Messner et al., 1991), 

where c,(.), and cb(.) are squared integrable. Moreover, 

the vector function c : $7 --) X2, c(x) = (~,(x),cb(x))~, 
lies in a convex set P, so that a(x) E [g(x), CQ) and 

b(x) E bd4,~(41. 

The functions k(., .) and the c,(.) and cb(.) are referred 
to as the kernel and the influence functions respectively. 
The integral representation has been found to be useful 
in functional adaptive control (Messner et al., 1991). 

Defining the functional vector regressors for each o E G, 

4=(&o) = k(x(t),a)(I, -k(t))T, (34) 

d:(t,g) = k(z(t),o)(I, -V(x,t))T 

and the corresponding vector regressors and parameter 
vectors 

4(t) = s, #4t, o)Wu)do, c%(t) = /- 4% ~P’lE~W, 

8 = B (5PT(u) Q'(u))Tc(:)du, 
J 

(35) 

we can obtain parameterizations for the human gener- 
alized force Fh in (3) and Fd(x, t) in (32) 

Fb(x, x) = J @(x, i, o)%(o)do = 4(t)%, 5 (36) 

F,j(x, t) = J &(t, o)Tc(o)da = q5d(t)Te, s 
where c(.) = (c~(.),c~(.)) T and 8 = (19,, Bb)T. 

The integral representation (36) is used in the actual 
implementation of the estimation algorithms. However, 
the equivalent vector parametrization (36) is more useful 
in the analysis. We use only the more familiar vector 
parametrization (36) in the remainder of the paper. 

5.2 Force Observer 

The muscle force F cannot generally be measured even 
with a force sensor unless invasive techniques are used. 
For the estimation of the unknown parameter vector 8 
in (36), we shall utilize a force observer to obtain F(t), 
which is the stable filtered output of F(t), using only 
position and velocity measurements, 

3(t) = &F(t), x > 0. (37) 

Since T, M(x) and C(x) are known, it can be verified 
from (2) that F(t) can be computed by 

3 =XM(s)i - &r(t) , (38) 

r(t) :=T(t) + C(x(t))x(t) + XM(x(t))i(t). 

The filtered force F(t) is related to the biomechanics 
parameters 0 by 

3(t) =p(t)%, p(t) := &4(t). (39) 

5.3 Adaptive Damping Control 

Using the certainty equivalence approach, we now re- 
place Fd(x, t) in either the dynamic damping control 
law in Eq. (20) or the static damping law in Eq. (27) 
(32) by its estimate Fd(x, t), 

&xc, t) = 6(x, t) - b(x, t)V(x, t) = &(t)%(t) 

(40) 

and 4Jt) is defined in (35). 

The parameter estimate vector 4 is updated using the 
following Parameter Adaptation Algorithm (PAA), 

&(t) = - Projg [P(t)&(t) - d(t) + b(t)e(t)] , 

(41) 

i)(t) = -XP(t) +p(t)pT(t), P(0) = 0, (42) 

d(t) = -Ad(t) + ,o(t)3(t), d(0) = 0 (43) 

e(t) = x(t) - V(x, t) , (44) 
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where ¢(t) is defined in (35), p(t) is defined in (39), 
$-(t) is given by (38) and Pro j@ is the projection op- 

erator that makes sure that (~ remains in the proper 
set Pc specified in Assumption 1 so that Hill parameter 
estimates &(t, x), b(t, x) satisfy &(t, x) > a(x), /~(t, x) E 

Notice that the PAA in (41) is driven by two adaptation 
error signals: the "input" error signal P@ - d, and the 
"output" error signal e = ~ - V. The combination of 
output and input error signals in a PAA was first sug- 
gested by (Slotine and Li, 1989) for robot manipulator 
tracking control problems. 

The update law for the gain matrix P in (42) and that 
definition of the error PO  - d is based on the work 
of (Kreisselmeier, 1989). To understand the meaning of 
the error term P O - d, multiply both sides of (42) by 
O and observe that P( t )O and d(t) satisfy the same 
ODE and have the same initial condition. Therefore, by 
the uniqueness of the solution of ODEs, P( t )O = d(t). 
Hence, the PAA (41) can be re-written as 

--- - Proj@ [P(t)O(t)  + ¢( t )e ( t ) ] ,  (45) 

where (~(t) = (~(t) - O. 

Figure 5 shows a block diagram of the overall adap- 
tive damping control system. Although thefigure shows 
a static certainty equivalence damping control block in 
the system, this block could be the dynamic certainty 
equivalence damping control. 

Human User | 
(Force-Velocity 

Relationship) I, I 
+ ~  Exercise Machine I I x )~ - ~ f ~  (Robot Equation) I I 

i ia;hi~i;~ .............. I ...... '- ...... : ............ ~- ...... 

}_ T--~ Obse~lver l ~ - ~  Ad~on ~ '~ 'a  [ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 5. Control architecture block diagram 

The following theorem shows that when the certainty 
equivalence dynamic damping control law is utilized, 
the adaptive controller is capable of tracking an arbi- 
trary desired velocity field, while interacting passively 
with the human user. A weaker bounded tracking error 
result, similar to Theorem 2, can be obtained if the cer- 
tainty equivalence static damping control law is utilized 
(Shields, 1997; Shields and Horowitz, 1997). 

Theorem 3. Suppose that the desired velocity profile V(x ,  t) 
satisfies 0 < Y ( x , t )  < ~ where a(x),-b(x) are the 

b(x) 
bounds on the Hill parameters in Assumption 1. 

The certainty equivalence controller consisting of the dy- 
namic damping controller (20) with Fd(X, t) replaced by 
Fd(x, t) in Eq. (40), and the identifier (41)-(44) has the 
following properties: 

(1) The closed loop system is passive w.r.t, the input 
output pair [F, 5]. 

(2)Let e = 2 - V(x , t ) ,  ef = vy - V f ( x , t ) ,  and e~ = 
(e, e/)  T. Suppose that the user's force F(t )  is given by 
a Hill relation that satisfies Assumption 1 so that 

F(t)  = Fh(x ( t ) , k ( t ) )  := a(x) -- b(x)5c. 

Then, ea ~ 0. Thus, the desired velocity field V is 
asymptotically followed. 

Proof :  See (Li and Horowitz, 1997b; Li, 1995). 

Although the results in theorem 3 can be achieved using 
a simpler PAA, like a gradient PAA, the filtered gain 
matrix update law (42) with the input error term PO - 
d = PO enhances the convergence of the parameter 
error to zero and is needed in the development of the self- 
optimizing control strategy, which is breifly discussed in 
the next section. 

6. SELF-OPTIMIZING CONTROL STRATEGY 

The dynamic damping adaptive control in the previous 
section is capable of following an arbitrary desired ve- 
locity field. However, in order for the control system to 
achieve an optimal exercise regime, it is necessary that 
the desired velocity field be given by V* (x) in (4), which 
depends on the unknown Hill surface functions a(x) and 
b(x). Since a(x) and b(z) are unknown, we can therefore 
define the optimal desired velocity field estimate 

~ / * ( x , t ) =  5 ( x , t )  (46) 
t)' 

which is based on the parameter estimate O. However, 
an optimal exercise regime is only achieved if 1I* (x, t) 
V*(x), which is guaranteed if O -~ O. Unfortunately, 
the optimal velocity field estimate I~* (x, t) may not have 
enough excitation to guarantee that (~ ~ (9 or V* (x, t) -~ 
V*(x). 

A self-optimizing control strategy was introduced in (Li 
and Horowitz, 1994; Li, 1995) to solve tile this prob- 
lem. In this strategy a reference velocity field genera- 
tor is used to provide the exercise control system with 
different desired velocity fields. The reference generator 
will either provide the optimal velocity field estimate 
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V*(x,t)  in (46) or a training velocity field Vtr(x,t) ,  
which provides sufficient excitation so that  the true Hill 
surface functions a(x) and b(x) can be identified. Since 
the linearized Hill surface model in Eq. (3) is affine in 
the velocity 2 at each position x, the training velocity 
profile must at least visit sufficiently often two differ- 
ent velocities at each position x to provide persistence 
of excitation, so as to properly identify the Hill surface 
functions a(x) and b(x). Thus, the training velocity field 
Vtr(x,t)  is specified to be the time varying weighted 
average between two constant velocity fields Yhig h and 
Y~o~2  • 

A finite state machine excitation supervisor switches be- 
tween these two desired velocity fields, based on an error 
signal which provides information on the accuracy of the 
estimated optimal velocity field. Switching is performed 
in a manner that,  when the optimal velocity field es- 
t imate is inaccurate, the training velocity field is more 
frequently chosen. On the other hand, the optimal ve- 
locity field estimate is more frequently chosen when the 
finite state machine supervisor determines that  it is ac- 
curate. A block diagram of the overall self-optimizing 
control system is depicted in Fig. 6. 

USER 

Ref0 .oo Ada, vo rgkl Exoroi  L L _ .  

position, velocity [ 

Fig. 6. Self-optimizing control system 

A state transition between the training or optimal ve- 
locity fields can be generated by either a deterministic 
or stochastic criterion. As shown in (Li and Horowitz, 
1997b; Li, 1995), under the assumption that  the Hill 
surface is time invariant, when the deterministic excita- 
tion supervisor is used, only a finite number of training 
phases occur after which the user exercises at the op- 
timal velocity profile. Similarly, if stochastic excitation 
supervisor is used, the probability that  a training phase 
occurs vanishes asymptotically with time, and it is al- 
most certain that  the user performs the optimal exercise. 

In an actual implementation, the assumption that the 
user's force is governed by a time invariant Hill surface 
is not strictly true due to the variability of the effort 
level, fatigue and other factors. However, by setting the 
decision parameters in the excitation supervisor appro- 
priately, the excitation supervisor can be made insen- 
sitive to small variations in the Hill surface, while still 
responding to sufficiently large variations, and transi- 
tioning into the training state, so as to learn the new 
Hill surface. Interested readers are referred to (Li and 
Horowitz, 1997b; Li, 1995) for details. 

The self-optimizing control strategy was implemented 
on the experimental setup (Fig. 3) described in section 
2.1. The subject was instructed to exercise at a con- 
stant effort level as far as he could discern. The cer- 
tainty equivalent dynamic damping control law was uti- 
lized in these tests. The stochastic excitation supervisor 
was used to determine the transitions between training 
and opti-poteric desired velocity fields. Experimental re- 
sults are shown in Figs. 7 and 8. As shown in Fig. 7, the 
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Fig. 7. Reference velocity profile: V(x(t),  t) 

desired velocity profile V(x(t),  t) consists of the training 
velocity profiles which are alternate constant velocities 
at Vhigh = 6 rad/s  and ~ow = 2.5 tad/s ,  and the esti- 
mated optimal velocity profiles. The figure shows how 
the stochastic excitation supervisor switches between 
the training and optimal exercising regimes. From Fig. 
8, where the actual velocity and the desired velocity are 
plotted, we see that  the certainty equivalent dynamic 
damping control law was able to cause the subject to 
execute the desired exercise profile during both the the 
training and optimal exercising regimes. 
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Fig. 8. Reference and actual velocity versus time 
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7. CLINICAL STUDIES 

In this section the results of clinical studies using the 
arm cranking exercise described in section 2.1 and the 
certainty equivalence static damping control law are re- 
ported. The purpose of these studies is to verify the 
effectiveness of the linearized model in Eq. (3) in de- 
scribing the strength characteristics of human subjects 
and to see if it can be used to successfully implement 
the optipoteric exercise, both without fatigue, and in 
the presence of fatigue. The benchmark for comparison 
to the optipoteric exercise were isokinetic (constant ve- 
locity) exercises at three different velocity levels. Two 
exercise protocols were used. The first was a shorter pro- 
tocol done at a low effort level. Its purpose was to verify 
the assumptions made about using the strength surface 
as a method of optimizing the flow of energy from the 
exerciser to the machine. The second protocol was de- 
signed to test if the optimality of the optipoteric exercise 
regime held even when the user is fatiguing. This sec- 
ond test was particularly critical in light of the results 
in (Beelen and Sargeant, 1991; McCartney et al., 1983), 
where is was found that  the fatigue rate (as measured by 
the decrease in power over a certain interval of time) for 
low velocity isokinetic exercise was less then the fatigue 
rate for high velocity isokinetic exercise. 

Both the low effort protocol and maximum effort pro- 
tocol started with an excitation phase, where the de- 
sired velocity was switched between low and high ve- 
locities. This was necessary to satisfy the persistence of 
excitation requirements described in section 6. During 
this excitation phase the subjects force-velocity param- 
eter functions, a(x ,  .) and b(x , - ) ,  were estimated. These 
parameters are used to implement the certainty equiva- 
lence static damping control law, (27), and for specifying 
the optimal velocity field V * ( x )  in (4) later in the pro- 
tocol. For the low effort protocol, the excitation phase 
(30 seconds) was followed by a randomized sequence of 
three isokinetic t reatments (20 seconds each at 2.0, 4.5, 
and 7.0 rad./sec.) and the optipoteric treatment (20 sec- 
onds). The randomization was done so that  if any fatigue 
occurred during the protocol, its effect would not bias 
the later treatments.  Six normal male college students 
volunteered for this portion of the study. For the maxi- 
mum effort protocol, the excitation phase (55 seconds) 
was followed by one of the isokinetic (195 seconds at 2.0, 
4.5, and 7.0 rad./sec.) or optipoteric (195 seconds) treat- 
ments. The treatment lasted for enough time so that  a 
significant drop in the power level of the exercise was 
produced. At the end of the treatment a final excitation 
phase (30 seconds) was implemented so that  the force- 
velocity parameters of the subject could be determined 
after the fatigue episode. Only one protocol per day was 
performed to allow the subjects adequate recovery time 
between the four experiments. Four normal college stu- 
dents volunteered for this protocol. 

For the maximum effort protocol, the neural activation 
was likely to be constant within the protocol and across 
different protocols for each of the treatments (Pertuzon 
and Bouisset, 1973). For the low effort protocol this was 
not the case, as a subjects impression of their effort level 
is not reliable (Merton, 1954). As a consequence, it was 
necessary to verify that  the effort level during this pro- 
tocol was constant, otherwise the difference in power 
output of each treatment could be due to factors other 
then the velocity difference. To check the effort level, the 
processed electromyogram (rectified and filtered) signal 
from the muscles being exercised was displayed on an os- 
cilloscope. The subjects could then monitor their neural 
activation by looking at the scope trace and make any 
adjustments necessary if they observed a change in the 
level of the trace. Although the strength surface is stud- 
ied for a constant effort level at each velocity, the scheme 
proposed in this paper is not limited to this case. The 
optimization can be based on whatever exercise strat- 
egy the user decides to pursue for the different desired 
velocities. 

To evaluate the effectiveness of the isokinetic and op- 
tipoteric treatments in terms of maximizing the rate of 
energy dissipated by the user, a filtered power signal was 
used. Since the true instantaneous power, P = F -  k, is 
not available because F is not measurable, a "filtered" 
power variable was computed by 

= f .  ~, (47) 

where T = ~ . F  is the output of the force observer, 
given by Eq. (37). If A is chosen large enough, the band- 
width of the filter for ~- will be large and ~" will closely 
approximate F. 

To obtain average values of ~- and T' over a cycle of 
the exercise motion, the data was processed through an 
FIR. boxcar filter. The coefficients of the filter were set 
to give unity gain and the tail of the filter was longer 
then the amount of time for one period of the low veloc- 
ity motion. The averaged filtered torque and averaged 
filtered power signals will be denoted by ~'a,e and Pa,~ 
respectively. The total amount of work performed dur- 
ing the maximum effort protocol was calculated using 
the integral of the averaged filtered power signal, 

W o r k  = 7 ~ w ( ~ ) d T .  (48) 
1 

where tl and t2 are the times just after the initial exci- 
tation phase and just before the final excitation phase. 

7.1 Resul ts  

Table 1 summarizes the results of the low effort protocol 
for the arm machine. Values of filtered power are means 
over the duration of the treatments indicated. Values 
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of estimated optimal velocity are means over the du- 
ration of the optipoteric treatment.  Using upper-tailed 
paired t-tests the sample mean ~ for the optipoteric 
treatment was found to be significantly greater then the 
sample mean 7 ) for the low, medium, and high velocity 
isokinetic treatments at confidence levels of 99%, 95%, 
and 95% respectively. This establishes that  the identi- 
fier does determine the velocity that  corresponds to the 
peak in power according to the torque-velocity relation- 
ship of the subject, and, furthermore, that  the static 
damping controller is successful in stabilizing the mo- 
tion close enough to the estimated optimal velocity so 
that  the power of the optipoteric treatment is optimal 
relative to the isokinetic treatments. Figure 9 illustrates 
the superb tracking ability of the static damping control 
law, described in section 4, in tracking the optipoteric 
desired velocity field, V*(x), for the arm exercise ma- 
chine. The tracking error in this case is not significantly 
worse then that  achieved by the dynamic damper con- 
trol law described in section 3. 

I S = b j ~ ;  II 1 i 2 I 3 i 4 ] 5 I 6 II M e ~ n ~ S t d .  
Opti.: 72.8 50,4 69,4 58.3 68.8 52.9 62.14-9,47 
Low Iso, : 34.9 36.6 44.7 41.2 51.7 35.7 40.84-6.52 
M e d .  I s o . :  56.4 44.5 64.5 49.5 74.6 37.I 54,44-13.7 
High Iso.: 32.4 34.7 19,8 59,4 62.9 17.I 37.74-19.4 

I M . . . .  V ' :  5 .79 I 4 .57  ] 4 .07 I 5,64 ] 4 .6~ I 4.01 4.784-0.77 

Table 1. Arm machine mean filtered power 
7) in Watts,  and mean estimated optimal ve- 
locity V* in rad./sec., for the different treat- 

ments of the low effort protocol. 
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Fig. 9. Tracking performance of the static damper for the 
arm exercise machine during the optipoteric phase. 

Figure 10 shows the time dependence of 7)aw during the 
intended exercise portion of the maximum effort proto- 
col. The total amount of work during the intended exer- 
cise portion of the protocol was calculated for each treat- 
ment using Eq. (48). The results are listed in table 2. 
The optipoteric t reatment gave statistically significant 

greater power then all three of the isokinetic treatments 
at a confidence level of 95%. Thus, the long term opti- 
mality of the optipoteric profile has been shown and the 
fear that  the larger amount of fatigue at a high velocity 
optipoteric treatment may cause long term suboptimal- 
ity of the treatment was shown to be unfounded for this 
exercise regime. 
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Fig. 10. Averaged filtered power during the intended 
exercise portion of the maximum effort protocol for 
the arm exercise machine. Each curve represents the 
average of the four subjects. 
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4.834-0.27 
4.i94-0.31 

Table 2. Work in k Joules performed on the 
arm exercise machine during the intended ex- 
ercise portion of the fatiguing protocol. Pre- 
and post-fatigue estimated optimal veloci- 

ties, V*, are in units of rad./sec.. 

The results presented in this section also demonstrate 
that  the opti-poteric velocity is highly variable, validat- 
ing the need for an adaptive scheme, such as the one 
proposed in this paper, to optimize the external power 
output. The low effort protocol has shown that  the op- 
timal velocity varies from subject to subject. The pre- 
and post-fatigue optimal velocities for the maximum ef- 
fort protocol have shown that the optimal velocity varies 
with fatigue. By comparing the optimal velocities for the 
low and maximum effort protocols the optimal velocity 
has been shown to vary with effort level. The position 
dependence of the optimal velocity has also been demon- 
strated. 
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8. CONCLUSION 

In this paper we discussed the control of self-optimizing 
exercise machines. Based upon known human biome- 
chanical characteristics, a linearized generalized force- 
velocity relationship was postulated, which models the 
response of muscular generalized forces acting on the 
exercise machine in the neighborhood of an operating 
velocity trajectory. A new opti-poteric exercise strategy 
was describe, in which the instantaneous power pro- 
duced by the human user is optimized, and the exer- 
cise machine control objective was define in terms of 
tracking the unique optimal velocity field at which the 
user exercises at the maximum power level. Certainty 
equivalence adaptive dynamic and static damping con- 
trol laws were formulated which enforce that the closed 
loop system always interacts passively with the human 
user and track an arbitrary desired velocity field, even 
under the action of the user's external forces. The dy- 
namic damping control law asymptotically achieves a 
zero tracking error, while the static damping control 
law achieves ultimate boundedness of the tracking error. 
A self-optimizing control strategy was briefly described 
that allows the control system to identify the biome- 
chanics of the user and subsequently determine the op- 
timal velocity field to be tracked by the control system. 
Experimental results were presented that verify many of 
the assumptions postulated in the paper. In particular, 
clinical studies performed on a arm-cranking exercise 
machine were presented that verify the feasibility of the 
proposed control scheme both with and without a fa- 
tigue episode. It was shown that the proposed control 
system is capable of identifying and tracking the opti- 
poteric velocity field which maximizes the instantaneous 
power produced by the user. Moreover, the opti-poteric 
exercise workout produced the maximum user overall 
energy consumption, relative to benchmark isokinetic 
exercises, even if significant fatigue is occurring during 
the workout. 
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