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Abstract— We formulate the Asymmetric Cell Transmission
Model (ACTM) as a piecewise affine system defined over regions
of the state and input space. We synthesize a hybrid Model
Predictive Controller (MPC) for the piecewise affine model such
that persistent feasibility and stability are guaranteed. We do
so by designing a terminal constraint and terminal cost for the
equilibrium state of the system. We include a detailed analysis
of the equilibrium point of the piecewise affine system, and
define the region of demand under which an equilibrium point
exists. We show that our method achieves the same performance
in terms of efficiency and exhibits much smoother behavior
than that of the commonly used relaxed ACTM controller
formulation.

I. INTRODUCTION

Due to the inflation of congestion and delays in urban
vehicular networks [1], development of traffic management
and control tools is becoming more and more crucial for
efficient utilization of the current infrastructure of metropoli-
tan areas. There are two types of networks: freeways and
urban arterials, with each type having its own model of traffic
progression. In this work, we study the synthesis of control
strategies that could be incorporated for ameliorating traffic
conditions in freeways. In freeways, the inputs available to
the control engineer include ramp metering and variable
speed limits. Ramp metering refers to the determination
of the amount of flow entering the freeway through on-
ramps; variable speed limits are a mechanism of assigning
speed limits dynamically such that congestion occurrence is
postponed or avoided.

Ramp metering has been shown to be capable of reducing
delays in freeways [2]; hence it is an effective strategy for
increasing throughput of the network. As a result of this
effectiveness, several ramp metering strategies have been
developed ranging from fixed–time controllers [2] to con-
troller synthesis from signal temporal logic specifications [3]
to synthesis of robust state-feedback controllers [4]. Among
possible approaches for ramp metering, model–predictive–
based controllers that optimize some performance metric
are favored. In [5], a nonlinear model predictive controller
minimizing a weighted sum of Total Travel Time (TTT) and
Total Time Spent (TTS) was introduced. In [6], variable
speed limits are taken into account in a nonlinear model
predictive controller with a TTS cost function. In [7], ramp
metering flows are assumed to be obtained through an
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existing strategy, and the speed limits are attained through
a model predictive controller. In [8], a weighted sum of
TTT and Total Travel Distance (TTD) is optimized at every
time step, where the optimization problem of interest is
formulated as a linear program. In [9], speed limits are
considered in addition to ramp metering while optimizing
for the same performance measure as [8].

Despite the popularity and practicality of model predictive
control, stability and feasibility properties are often not ad-
dressed in practice. The existing work in the traffic network
control literature for handling infeasibility conditions include
[10] which proposes to minimize the amount of constraint
violation of temporal logic specifications for signalized in-
tersections and [11], where persistent feasibility for a target
set of states is guaranteed by constructing invariant sets of
a finite abstraction of the system (an approximation of the
system evolution). Both [10] and [11] are for urban arterial
control; consequently, for freeways, the issues of persistent
feasibility and stability under model predictive control are
still not addressed. Hence, the focus of this work is to
design model predictive controllers for traffic networks with
guarantees on persistent feasibility and closed–loop stability
of the controller.

The organization of this paper is as follows. First, we
introduce the Asymmetric Cell Transmission Model (ACTM)
used to describe the freeway system and describe it as a
piecewise affine system over regions of the state and input.
Next, we show how to develop a hybrid model predictive
controller for this system by computing an equilibrium point
and designing a terminal set and terminal cost. Then, we
compare our proposed strategy to the popular relaxed linear
programming approach. The paper concludes with some
ideas subject to future work.

II. ASYMMETRIC CELL TRANSMISSION MODEL

In this section, we describe the Asymmetric Cell Trans-
mission Model (ACTM) [8] which is adopted throughout
this paper for modeling freeway traffic. For ACTM, the
freeway is divided into I segments where each segment can
have at most one onramp and one offramp as depicted in
Figure 1. The index set of all the segments is denoted as
I , {1, . . . , I}.
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Fig. 1. Schematic of Freeway Segmentation
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For each segment i, the following quantities are defined:
• ni(k): Number of vehicles in segment i at time step
k. This is also referred to as the density of vehicles in
segment i.

• fi(k): Number of vehicles leaving segment i, moving
to segment i+ 1 during time step k.

• li(k): Number of vehicles queuing on the onramp of
segment i at time step k.

• ri(k): Number of vehicles entering segment i through
its onramp during time step k.

• di(k): Number of vehicles entering onramp of segment
i during time step k, also known as demand.

In this model, mainline and onramp densities (ni(k) and
li(k), i ∈ I) are the states of the system. The following
parameters of the model are assumed to be known a pri-
ori through a calibration process [12]. The parameters are
positive, unless otherwise denoted.

• vi: Normalized free-flow speed ∈ (0, 1].
• βi: Split ratio of the offramp in segment i ∈ [0, 1].
• wi: Normalized congestion wave speed ∈ (0, 1].
• γ: Blending coefficient of onramp flows ∈ [0, 1].
• nci : Critical density of segment i, the density above

which segment i is considered congested.
• f0(k): The exogenous demand entering link 1 (the most

upstream segment) at time step k.
The dynamics of the system states are obtained through

mass conservation equations:

ni(k + 1) = ni(k) + fi−1(k) + ri(k)− fi(k)/β̄i, (1)
li(k + 1) = li(k) + di(k)− ri(k). (2)

where β̄i = 1 − βi. Note that the onramp flows ri(k) are
determined by a controller (assuming that all onramps are
actuated). The last piece of the traffic evolution model is the
mapping function between mainline flows fi(k) and densities
ni(k).

In freeway first order models, the flow in each segment i
is restricted by the number of vehicles available to leave
segment i, (β̄ivi (ni(k) + γri(k))), mainline capacity (f̄i)
and the available space in the downstream segment i + 1,
(wi+1 (n̄i+1 − ni+1(k)− γri+1(k))). In other words, the
flow in segment i ∈ {1, . . . , I − 1} is computed by:

fi(k) = min{β̄ivi (ni(k) + γri(k)) ,

wi+1 (n̄i+1 − ni+1(k)− γri+1(k)) , f̄i}.
(3)

Note that the edge flows of the freeway system are special
cases. The incoming flow f0(k) is an exogenous input. The
outgoing flow fI(k) is simplified since wI+1 is undefined:

fI(k) = min{β̄ivi (ni(k) + γri(k)) , f̄i}. (4)

Without loss of generality, we assume that:

f̄i = β̄ivin
c
i = wi+1(n̄i+1 − nci+1) (5)

where nci is the critical density of segment i which is the
density at which segment i transitions between congested
and uncongested states. This is a common assumption in
freeway modeling [13].

The densities ni(k), queue lengths li(k), flows fi(k), and
onramp inputs ri(k) are bounded by box constraints. The

states ni(k), li(k), fi(k) are non-negative since a negative
density, queue length, or flow between segments are not
physically possible. Similarly, the onramp inputs ri(k) are
restricted to be non-negative. In addition, each state and input
has an upper bound, defined here:

• n̄i: Jam density of segment i, the maximum number of
vehicles that can fit in segment i.

• l̄i: Max queue length of segment i.
• f̄i : Main-line capacity defined as the maximum number

of vehicles that can leave segment i.
• r̄i: Maximum allowable ramp flows.

The density and queue lengths are restricted simply by space
limitations on the freeway and onramp, respectively. The
flows fi and the onramp inputs ri are restricted by the
capacity of the freeway; only a certain amount of cars can
move forward on the given freeway lanes in the sampling
time of the model.

A. Piecewise Affine Model
The minimum operator in Equation (3) implies that free-

way can be described by a piecewise affine model: in
free flow, fi(k) = β̄ivi (ni(k) + γri(k)); in congestion,
fi(k) = wi+1 (n̄i+1 − ni+1(k)− γri+1(k)). This piecewise
affine system is described by the Equations (1), (2) and
(3). Next, we specify the state space partitions affiliated
with each piece of the system. The dynamics of segment
i are dependent on segment i’s current density ni(k) and the
density of the segment directly downstream ni+1(k). Define
the uncongested flow fv,i(k) of segment i and the congested
flow fw,i(k):

fv,i(k) = β̄ivi(ni(k) + γri(k)) (6)

fw,i(k) =

{
wi+1(n̄i+1 − ni+1(k)− γri+1(k)) if i < I

f̄i if i = I
(7)

The last segment, when i = I , is different from other seg-
ments as there is no downstream segment imposing restric-
tions to its flow. Hence, the flow fi(k) can be characterized
by three regions:

fi(k) =


fv,i(k) if fv,i(k) ≤ fw,i(k), fv,i(k) ≤ f̄i
fw,i(k) if fw,i(k) ≤ fv,i(k), fw,i(k) ≤ f̄i
f̄i if f̄i ≤ fv,i(k), f̄i ≤ fw,i(k).

(8)

In general, the regions for flow fi(k) defined in (8) depend
on the state ni(k) and ni+1(k) (if i < I) as well as the
input ri(k). If γ = 0, then the regions defining fi(k) are not
dependent on the input ri(k).

The dynamics of ni(k+1) rely on both fi−1(k) and fi(k)
resulting in nine equations for the density of segment i. The
exception to this is for the first segment i = 1 and the
last segment i = I . The first segment includes f0(k) as
an external demand, so there are only three equations for
n1(k + 1). The density of the last segment is simplified to
six equations since fI(k) is only defined by two regions (4).

These equations hold for a network of any size. The flow
variables fi(k) can be eliminated by substituting the Eq. (8)
into (1) to achieve a piecewise controller over state space
regions Ri. The dynamics are then defined by equation (2)
and

N(k + 1) = AiN(k) +BiR(k) + gi if (N(k), R(k)) ∈ Ri (9)
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where N(k) = [n1(k), n2(k), . . . , nI(k)]T and R(k) =
[r1(k), r2(k), . . . , rI(k)]T . Denoting the vector L(k) =
[l1(k), . . . , lI(k)]T , D(k) = [d1(k), . . . , dI(k)]T the vector
form of equation (2) is

L(k + 1) = L(k) +D(k)−R(k). (10)

Note that in this notation, we have assumed that all segments
have onramps, and all onramps are actuated. If this is not the
case, the equations can easily be modified so that the ramp
queues of actual onramps appear in the equations.

III. HYBRID MODEL PREDICTIVE CONTROL

In this section, we construct a hybrid model predictive
controller for the ramp metering system. Our approach is
to design a model predictive controller whose objective is
to track the equilibrium point. Then, we can apply hybrid
model predictive control design techniques to synthesize
the terminal set and terminal cost to guarantee persistent
feasibility and stability of the piecewise affine system.

For hybrid model predictive control, a constrained finite
time optimal control problem is solved at each time step.
The first input is applied, then the horizon is receded and
the shifted horizon problem is then solved at the next time
step using the current state feedback. The H-step constrained
finite time optimal control problem at time step t is:

min
X̃(k),Ũ(k)

X̃(H)TPX̃(H) +

H−1∑
k=0

X̃(k)TQX̃(k) + Ũ(k)TRŨ(k)

(11a)
s.t. (9), (10) (11b)

0 ≤ N(k) ≤ N̄ (11c)
0 ≤ L(k) ≤ L̄ (11d)
0 ≤ R(k) ≤ R̄ (11e)

X̃(H) ∈ Xf (11f)
N(0) = N(t), L(0) = L(t) (11g)

where X̃(k) = [N(k)T − NT
ss, L(k)T − LT

ss]
T , Ũ(k) =

R(k) − Rss, N̄ = [n̄1, . . . , n̄I ]T , L̄ = [l̄1, . . . , l̄I ]T , R̄ =
[r̄1, . . . , r̄I ]T . The steady state or equilibrium points are
denoted as Nss, Lss, Rss. The cost is quadratic with state
penalty Q = QT � 0, input penalty R = RT � 0, and
terminal cost penalty P = PT � 0. The final state is
restricted to be in the terminal set Xf . The current state
feedback at time t, N(t) and L(t) are used. The MPC control
law for ramp metering at time t is then:

R(t) = Ũ∗(0) +Rss (12)

where Ũ∗(0) is the optimal input for the first step computed
by (11).

We next show how to compute the equilibrium of the
system for a constant demand profile. Then, we design a
stable and persistently feasible Hybrid MPC by applying the
design methodology proposed in [14]-[15] to our problem.

A. Equilibrium Computation

The equilibrium of the piecewise system (9) is dependent
on the current demand. In order to evaluate an equilibrium of
the system, we assume the demand is stationary or constant
over time, i.e. di(k) = di ∀k and f0(k) = f0 ∀k. Denote the
constant demand vector D = [d1, . . . , dI ]T .

First, without knowing which region Ri of the model (9)
the equilibrium point lies in, the steady state queue length
Lss and ramp metering input Rss can be determined by
computing the steady state of (10):

Lss = Lss +D −Rss. (13)

This equations tells us that the steady state ramp metering
input Rss = D and that Lss is a constant value.

Remark 1. A steady state ramp metering input Rss = D is
feasible if 0 ≤ D ≤ R̄ where R̄ is the vector of upper bound
limits for R, i.e. R̄ = [r̄1, . . . , r̄I ]T .

It can be verified by examining equation (10) that if
D exceeds the feasible values for R, L does not have an
equilibrium point. That is, if di > r̄i, then queue i is
receiving more cars than it can release onto the freeway. If
the demand is stationary, then the queue length li will grow
without bound and is therefore unstable.

Remark 2. A steady state queue length vector Lss is feasible
if 0 ≤ Lss ≤ L̄ where L̄ is the vector of upper bound limits
for L, i.e. L̄ = [l̄1, . . . , l̄I ]T . The steady state queue length
for segment i, [li]ss = li(0) if di = r̄i. Otherwise, the steady
states [li]ss ∈ [0, l̄i] are reachable.

Remark 3. Among a continuum of equilibria for L, the
desired equilibrium point is Lss = 0. This corresponds to
empty queues at steady state, which guarantees that no cars
are getting stuck in a queue (cars are stuck if L > 0 and
R = 0 for a long period of time). However, in order to
prove stability of the hybrid MPC (see the details in the
next section), the equilibrium point must be interior to the
constraint set. Therefore, we choose an equilibrium point
of LSS = ε, where ε is a positive number close to zero.
In practice, a controller that brings the queue length to ε
effectively brings L to zero.

Next, we review some results from the literature regarding
the steady state density vector Nss. In [13], the equilibria
of the Cell Transmission Model (CTM) under stationary
demand is studied. The CTM is similar to ACTM except
that γ = 0 and there are no ramp queues L(k). Equilibrium
results are established under the assumption of feasible
demand. We provide a definition of a feasible demand that
is similar to that from [13] in Definition 1. Under the
assumption of feasible demand, the work in [13] proves that
there exists a unique uncongested equilibrium that is stable
in the sense of Lyapunov. An uncongested equilibrium is an
equilibrium point in which Nss is in the set [0, N c] where
N c = [nc1, . . . , n

c
I ]T .

Definition 1 (cf. [13]). A constant demand D =
[d1, . . . , dI ]T is feasible if there exists an equilibrium point
of the system defined by (2), (1), (3), the resulting flows are
feasible, i.e. [fi]ss ∈ [0, f̄i] ∀i ∈ I, and the ramp metering
inputs are nonnegative, i.e. [ri]ss ≥ 0 ∀i ∈ I.

Lemma 1. For a stationary demand D that is feasible in the
sense of Definition 1, there exists an uncongested equilibrium
of the ACTM model.
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Proof. The proof follows directly from [13] Lemma 4.1.

Lemma 1 extends Lemma 4.1 of [13] to the more general
ACTM model (γ is not restricted to be zero). Let R1 ≡{
ni(k), ri(k)|fv,i(k) ≤ fw,i, fv,i(k) ≤ f̄i ∀i ∈ I

}
. We next

show that the uncongested equilibrium Nss is in R1.

Lemma 2. If there is an uncongested equilibrium point Nss,
then it is in R1.

Proof. Following the proof from [13] (Lemma 4.1 proof),
the uncongested equilibrium is:

ni = (β̄ivi)
−1fi − γri. (14)

Notice that:

ni ≤ (β̄ivi)
−1f̄i − γri

≤ nci − γri.

Then,

fv,i = β̄ivi(ni + γri)

≤ β̄ivi(nci − γri + γri)

≤ β̄ivinci = f̄i.

Recall also that β̄ivinci = wi+1(n̄i+1−nci+1) from (5). Then,

fv,i ≤ β̄ivinci
= wi+1(n̄i+1 − nci+1)

≤ wi+1(n̄i+1 − ni − γri)
= fw,i.

The second-to-last line is true because ni ≤ nci−γri ∀i ∈ I,
so nci+1 ≥ ni+1+γri+1. Thus, fv,i ≤ fw,i, fv,i ≤ f̄i ∀i ∈ I.
This is the definition of R1, so the uncongested equilibrium
must lie in R1.

The piecewise affine model defined in Section II-A enables
the development of a set definition assumption about the
demand. The steady state density vector Nss can be found
by computing the equilibrium of the affine system defined
over R1, or by solving the following equation:

Nss = A1Nss +B1Rss + g1. (15)

In order for the steady state equation 15 to hold, the resulting
solution Nss, Rss must lie in the uncongested region R1.
This brings us to the following theorem.

Theorem 1. Assume the following about the demand D:
• 0 ≤ D ≤ R̄
• The initial state L(0) is feasible
• Demand D and and external flow f0 satisfy

(
(I −

A1)−1(B1D + g1), D
)
∈ R1.

Then, there exists a feasible equilibrium Nss, Rss, Lss of
the system (9)-(10) such that Nss ∈ [0, N c], Rss ∈ [0, R̄],
Lss ∈ [0, L̄]. Moreover, there exists an equilibrium that is
uncongested, i.e. an equilibrium lies in R1.

Proof. The first two conditions give us feasible equilibrium
vectors Rss and Lss, following Remarks 1 and 2. The last
condition gives a steady state Nss that lies in R1. Note that
the matrix (I −A1) is invertible with eigenvalues {vi}.

Theorem 1 differs from the previous work [13] in that it
precisely defines the set of demands that result in having

an equilibrium point in the uncongested region, R1. The
particularly powerful result of Lemmas 1 and 2 is that a
search through other regions Ri with i 6= 1 is not necessary.
This is because an uncongested equilibrium must lie in R1.

Lemma 3. If the assumptions of Theorem 1 hold, and the
demands D and f0 are such that 0 < D < R̄ and (I −
A1)−1(B1D+ g1) > 0, then, the equilibrium Nss, Rss, Lss

of the system (9)-(10) is interior to the constraint set, i.e.
Nss ∈ (0, N̄), Rss ∈ (0, R̄), Lss ∈ (0, L̄).

Proof. The equilibrium Rss ∈ (0, R̄) by Remark 1. The
equilibrium Lss ∈ (0, L̄) by Remark 2. The equilibrium
Nss > 0 since Nss = (I − A1)−1(B1D + g1) > 0. The
equilibrium Nss < N̄ since by Lemma 1, the equilibrium
point Nss ≤ N c and by definition N c < N̄ .

B. Design of Terminal Set and Terminal Cost

It is well known that careful design of the terminal cost and
terminal constraint of a receding horizon controller yields
persistent feasibility and stability results (see Theorem 13.2
of [16]). In this section, We develop a stable and persistently
feasible hybrid model predictive controller based on the
methods of [14] and [15]. In particular, we follow the design
of Algorithm 3.1 in [14].

The design of a model predictive controller requires that
the equilibrium point must lie in the interior of the con-
strained state space, i.e. 0 < Nss < N̄ , 0 < Lss < L̄,
0 < Rss < R̄ (see Assumption (A1) in Theorem 13.2 of
[16]; also see [15]). We make the assumptions about demand
in Lemma 3.

First, we identify the regions of the dynamics in which the
equilibrium lies. In many cases, the equilibrium lies in the
interior of region R1, but it may generally lie on the border
of multiple regions. Define the error dynamics of the regions
Seq which contain the equilibrium point:

X̃(k + 1) = ÃiX̃(k) + B̃iŨ(k) i ∈ Ri,Ri ⊆ Seq. (16)

Note that the error dynamics are in general a piecewise linear
system.

Then, a search is done to find stabilizing piecewise linear
feedback controllers Ũ(k) = KiX̃(k) for all regions in Seq
and an associated Lyapunov function V (X̃) = X̃TPX̃ . This
search can be done by solving the following semidefinite
program:

min
Z,Yi,γ

γ (17a)

s.t. Z � 0 (17b)
Z (ÃiZ + B̃iYi) Q1/2Z R1/2Z

(ÃiZ + B̃iYi)
T Z 0 0

Q1/2Z 0 γI 0

R1/2Z 0 0 γI

 � 0

∀i ∈ Ri ⊆ Seq (17c)

where Yi = KiZ, Z = P−1/γ
If the equilibrium lies in the interior of R1, then the

terminal cost P can be designed by solving the Algebraic
Riccati Equation for the Ã1 and B̃1 matrices defined in R1

(cf. Remark 2 in [14]). Moreover, the terminal set can be
found by computing the maximal positive invariant set for
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the system in R1 subject to the LQR controller found for
Ã1, B̃1, Q,R.

In general, the maximal positive invariant set for the
system under the controllers Ki found by (17) is used as the
terminal set Xf . In general, the maximal positive invariant
set is intensive to compute as it is comprised of a union
of polyhedron; see [15] for how to compute the maximal
positive invariant set. We use tools from the multi-parametric
toolbox [17] to compute the maximal positive invariant set.

By Theorem 3.1 of [14], the closed loop system is asymp-
totically stable under the hybrid model predictive controller
(11)-(12) with the terminal cost P determined by (17) and
the terminal set the maximal positive invariant set of this
system under piecewise linear feedback controllers Ki.

C. Practical Considerations

We have designed a persistently feasible and stable con-
troller. To the best of our knowledge, no other proposed
controller for this problem has any feasibility or stability
guarantees. There are however, a few practical considerations
that must be taken into account.

The first consideration is how to determine the prediction
horizon N such that the set of feasible initial states covers the
full state space. The initial feasible state can be computed for
an N step horizon by computing the controllable pre-sets of
the piecewise affine system (9), (10). The desired prediction
horizon N would correspond to the N -step controllable pre-
set that covers the full state space. However, these pre-sets
are in general a union of polyhedrons and thus are hard to
compute [15] since a union of polyhedrons is not necessarily
convex and the union may consist of many polyhedrons. It
may be easier in some cases to determine N in simulation
by checking how big N must be to be feasible for the worst
case initial feasible states.

The second consideration is that the assumptions about
D in Theorem (1) may be too restrictive. In reality, it is
possible to allow the queues to spillover into the urban
arterial networks. This effectively allows the upper bound
constraint on L to be a soft constraint. Simply adding a
soft constraint extends the feasibility of the problem, but
loses any guarantees about stability. In general, stability of
soft constrained MPC is understood for linear systems [18],
[19]. Unfortunately, designing stable MPC controllers for
soft constrained piecewise affine systems has not yet been
studied to the best of our knowledge.

IV. CASE STUDIES

In this section, we present simulation results comparing
our hybrid MPC approach with the linear program (LP)
formulation of optimal freeway ramp metering [8] for a two
link freeway example with a sampling time of 3 seconds. The
prediction horizon for both controllers is H = 25. Figure 2
demonstrates the trajectory of states and inputs when our hy-
brid MPC framework is utilized for ramp metering whereas
Figure 3 shows the same plots where the linear programming
formulation is used.

We evaluate the efficiency of the two controllers using
two metrics: total travel time (TTT) and total travel distance
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Fig. 2. Trajectory of Hybrid MPC controller. The blue solid and red dashed
lines represent trajectories of the first and second segments respectively.
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Fig. 3. Trajectory of LP controller

(TTD). The total travel time can be written as the sum of
the segment densities and the queue lengths over all time:

TTT =

I∑
i=1

∞∑
k=0

(
ni(k) + li(k)

)
, (18)

and the total travel distance (which is a measurement of
throughput) is equal to the sum of the segment flows and
on-ramp flows over all time:

TTD =

I∑
i=1

∞∑
k=0

(
fi(k) + ri(k)

)
. (19)

In general, a small total travel time and a large total travel
distance are desired.

As seen in figures 2 and 3, the initial condition is in con-
gestion. Both controllers can successfully steer the freeway
to the uncongested regime and an uncongested equilibrium is
achieved. The total travel time (TTT) of the hybrid trajectory
over the simulation period is 648.3 vehicles while the total
travel time of the trajectory resulting from linear program
formulation is 638.3 vehicles. Thus, the linear program
formulation is 1.6% more efficient in terms of total travel
time. However, the total travel distance (TTD) is the same
for both controllers at 353.1 vehicles.

The trajectories of the two controllers are quite different
qualitatively. Figures 2 and 3 show that the hybrid MPC
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trajectory is much smoother than the LP trajectory, and
there are less variations of the control input for the hybrid
controller. This smoothness is advantageous in a real-time
implementation since rapidly changing ramp flows cannot
be achieved in practice; this is because traffic response
time is longer than the agility required by linear program
formulation.

We note that our proposed controller has guarantees by
design whereas the linear programming method does not.
Our controller has a terminal set and terminal cost design
which guarantee the stability and persistent feasibility of the
controller. For the linear program, a cool–down period and
long prediction horizon are used to encourage stability [8].
There are no guarantees of persistent feasibility attached to
the linear programming controller. Moreover, our controller
is guaranteed to reach the equilibrium point whereas the
convergence of the linear program must be checked for
various prediction horizons and various initial conditions.

Another issue with the linear programming approach is the
exactness of the model relaxation. Even if the horizon length
and cool down period length are properly designed, there are
scenarios where the relaxation of the ACTM model does not
match the nonlinear model exactly. For example, if the ramp
flows R are not strictly less than the available mainline space
allocated to onramps, the relaxations introduced in [8] do not
necessarily hold. This results in model mismatch between
the predicted model of the controller and the evolution of
the actual network. Hence, in such cases, the linear program
does not perform optimally, while the hybrid formulation is
not restricted to certain conditions on the mainline densities.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, we have designed the first stable model
predictive controller for the ramp metering problem. To
the best of our knowledge, no other ramp metering model
predictive controller has rigorous guarantees of stability and
persistent feasibility. We compare our controller to the widely
proposed linear programming solution and show that there
is no significant performance degradation of our design. We
show that our controller provides a smooth trajectory and
converges quite quickly to the equilibrium point.

We acknowledge that in general the demand may vary
throughout the course of a day. However, real data shows
that the demand is constant for long periods of the day.
In ramp metering research, the demand is often assumed
to be constant over a prediction horizon. Nevertheless, the
handling of time varying demand is of interest. It is common
practice in the model predictive control literature to utilize an
observer and constant demand model. This design is able to
achieve desired steady state convergence (see Theorem 13.4
in [16]).

Finally, the scalability of a hybrid model predictive control
approach is subject to future work. However, the control
design done in this work makes large-scale methodology
such as decentralized, hierarchical, and distributed model
predictive control more easily applicable. In particular, it is

now possible to design and analyze stability of large-scale
algorithms for the ramp metering problem.
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Switzerland), pp. 502–510, July 17–19 2013. http://control.
ee.ethz.ch/˜mpt.

[18] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact
penalty functions in model predictive control,” in Proc. UKACC
International Conference (Control, 2000.

[19] M. N. Zeilinger, C. N. Jones, and M. Morari, “Robust stability
properties of soft constrained mpc,” in 49th IEEE Conference on
Decision and Control (CDC), pp. 5276–5282, Dec 2010.

1088


