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Abstract

The stability and robustness properties of the adaptive control
scheme proposed by Sadegh and Horowitz (1987) are stud-
ied. The properties include the global exponential stability
and Lp input/output stability of the nonadaptive (i.e., fixed-
parameter) control system and the global asymptotic stability
of the adaptive control scheme. Sufficient conditions for the
convergence of the estimated parameters to their true values
are also given. A computationally efficient adaptation scheme
that is a modified version of the original scheme is proposed.
The modified scheme utilizes the desired trajectory outputs,
which can be calculated a priori, instead of the actual joint
outputs in the parameter adaptation algorithm and the non-
linearity compensation controller. Sufficient conditions for
guaranteeing all the stability properties of the original scheme
in the modified scheme are also explicitly derived. A com-
puter simulation study of the performance of both schemes in
the presence of noise disturbances is conducted.

1. Introduction

Robotic manipulators are mechanical systems with
inherently nonlinear dynamic characteristics. Further-
more, their inertia properties and gravitational loads
vary during operation and are dependent on the ma-
nipulator payload, which may not be necessarily
known in advance. In flexible automation environ-

ments, robotic manipulators are required to handle a

variety of tasks while maintaining a consistently high
performance. Adaptive control has been proposed as a
viable technique for achieving a consistent manipula-
tor dynamic behavior in the presence of configuration
and payload variations.
The earliest work on model reference adaptive con-

trol for manipulators (Dubowsky and DesForges
1979) is based on a linear decoupled model. The steep-
est descent technique is utilized for parameter adapta-
tion. The first work on adaptive controls of mechani- .

cal manipulators based on stability theories was
reported by Horowitz and Tomizuka (1980). In this
work the hyperstability theory was utilized to derive an
adaptive control law for linearizing and decoupling
the nonlinear manipulator dynamics. Experimental
evaluations of this approach have been reported by
Anex and Hubbard (1984), Tomizuka et al. (1986),
and Horowitz et al. (1987). A Lyapunov stability-based
adaptive control approach for trajectory following has
been proposed by Takegaki and Arimoto ( 1981 ). In
these early works the unknown parameters in the ma-
nipulator dynamic equations, which are position-
dependent quantities, are treated as constants in the
stability analysis in order to show the asymptotic sta-
bility of the control scheme. Therefore the underlying
assumption is that the parameter adaptation law is
much faster than the manipulator dynamics.
Recent works in this field include those by Bales-

tino et al. (1983a; 1983b), Nicosia and Tomei (1984),
Craig et al. (1986), Slotine and Li (1986), Hsu et al.
( 1987), and Sadegh and Horowitz ( 1987). One trend in
these recent works is to assure the stability of the over-
all system in spite of the nonlinear nature of the pa-
rameters in the manipulator dynamic equations. This
is achieved by either of the following two methods: (1)
decomposing the nonlinear parameters in the manipu-
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lator dynamic equations into the product of two quan-
tities : one constant unknown quantity, which includes
the numerical values of the masses and moments of
inertia of the links and the payload and the link di-
mensions, the other a known nonlinear function of the
manipulator structural dynamics. The nonlinear func-
tions are then assumed to be known and calculable.
The parameter adaptation law is only used to estimate
the unknown constant quantities [e.g., Craig et al.
(1986)]; (2) utilizing nonlinear switching parameter
adaptation laws, making use of the knowledge of upper
bounds of the parameters in the manipulator dynamic
equations. This parameter adaptation law belongs to
the class of variable structure control schemes.

In Sadegh and Horowitz (1987) it is demonstrated
that by modifying the parameter adaptation law using
method (1) outlined above and making the Coriolis
and centripetal acceleration compensation controller a
bilinear function of the joint and model reference
velocities instead of a quadratic function of the joint
velocities, the adaptive control scheme introduced by
Horowitz and Tomizuka (1980) is globally asymptoti-
cally stable. A similar technique is presented by Slo-
tine and Li (1986). In these control schemes only joint
position and velocity feedback information is re-
quired ; no joint acceleration is used, and no matrix
inversion is used as in Craig et al. (1986).
The main drawback of the above-mentioned works

is the computational complexity of the schemes. The
schemes require on-line computations of a large
amount of nonlinear functions of the joint positions
and velocities. Digital implementations of such
schemes may require a slow sampling rate, which in
turn may deteriorate the performance of the controller.

In this paper we present a modified version of the
scheme introduced in Sadegh and Horowitz (1987).
The modification consists in utilizing the desired joint
positions and velocities in the computation of the
nonlinearity compensation controller and the parame-
ter adaptation law instead of the actual quantities. For
a given desired manipulator trajectory, the nonlinear
functions of desired joint positions and velocities could
be calculated and stored off-line. The modified scheme
has the following advantages over the original one:

1. The amount of on-line calculations is largely
reduced, and as a result, the scheme can be

implemented much more e~ciently.
2. Using the desired quantities in the adaptation

law removes the problem of noise correlation
between the estimation error and the adapta-
tion signal (Rohrs 1982). Hence the robustness
of the adaptive control law is also enhanced.

3. If the manipulator task is repetitive, the scheme
can be made into a learning one. This topic
will be pursued in a future article.

In this article we begin by proving additional prop-
erties of the scheme introduced by Sadegh and Horo-
witz ( 1987). These properties are ( 1 ) the global expo-
nential stability of the overall disturbance-free system
when the true parameters are used, (2) the input/out-
put stability of (1) with respect to input disturbances,
(3) the global asymptotic stability of the adaptive con-
trol scheme, and (4) sufficient conditions for the con-
vergence of the estimated parameters to their true
value for the adaptive case.

Following the above-mentioned analysis, we present
a modified scheme that will be referred to as desired

trajectory adaptive control. We will show that the
above properties can still be preserved, provided that
sufficiently large control gains are used and an explic-
itly defined auxiliary nonlinear feedback term is em-
ployed to compensate for the additional error intro-
duced by the modifications.

In section 2, the manipulator’s dynamic equations
of motion are presented. In section 3, the manipulator
control laws and their properties are presented. Sec-
tion 4 contains the simulation results and discussions.
Conclusions are given in section 5.

2. Dynamic Model of a Robotic Manipulator

In this article we consider a robotic manipulator com-
posed of a serial open chain of rigid links connected
with revolute joints. The dynamic equations of motion
for the manipulator can be expressed in the following
form:



76

where Xp is the n X 1 vector of joint positions; x~ is the
n X 1 vector of joint velocities; M(xp) is the n X n
symmetric and positive definite matrix (also called the
generalized inertia matrix); q(t) is the n X 1 vector of

joint torques or forces supplied by the actuators;
v(xp, xv) is the n X 1 vector resulting from Coriolis
and centripetal accelerations; g(xp ) is the n X 1 vector
caused by gravitational forces; and c(xp, xj is the
n X 1 vector caused by friction forces. v(xp, xv ) can be
expressed in the following form:

where the matrices N~’s are symmetric.
The following relation is satisfied between the ma-

trices Ni’s and the generalized inertia matrix M:

where mi is the ith column of M, and x,, is the ith
element of x,. The derivation of eqs. (2) and (3) is
given in appendix C.
We adopt the following notations with regard to the

Coriolis and centripetal acceleration vector in the
remainder of this article. For Wl and w2 E Rn let:

where vi is the ith element of v. The ith element of the
friction force vector c(xp, xv) can be expressed as

where c~~ {x~, , qi) represents the Coulomb friction com-
ponent and cl; x&dquo;, {t) represents the linear friction com-

ponent. The ith components of x&dquo; and q are denoted

by x,, and qi, respectively.
The Coulomb friction term has a significant effect

on performance of indirect robot arms. It is described by

where c,~m~ is the magnitude of the friction force.

The elements of the matrices M(xp ), N(xp )‘s and of
the vector g(x~) are in general nonlinear functions of
the position vector xp. They are also a function of the
link and payload masses and moments of inertia,
which may not be precisely known or may vary during
the manipulator task. The variation of these parame-
ters is especially significant in the dynamic response of
direct drive robotic arms.

2. I. Dynamic Equations Reparameterization

To dynamically control a manipulator, it is necessary
to supply a torque input to the actuators that contains
both a feedback and a feedforward control action. The
feedback part of the control action, as will be dis-
cussed in the following section, does not require inten-
sive on-line calculations. The feedforward part of the
controller contains the reference torque input plus the
nonlinearity compensation. In order to perform an
exact feedforward compensation, knowledge of the
elements of M(xp), N{xP)’s, and g(xp) is required dur-
ing the entire operation of the robot. These quantities,
as was mentioned earlier, are nonlinear functions of
joint positions and velocities. The characteristic of
these nonlinear functions, however, can be determined
from the kinematics of a particular robot. The coeffi-
cients of these nonlinear functions, on the other hand,
are determined from the inertia characteristics of the

manipulator, which may not be precisely known a
priori and may be subjected to variations.

In this article we will utilize the dynamic equation
reparameterization method proposed by Craig et al.
(1986). In this method, eq. (1) is reparameterized into
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Fig. 1. NSK direct drive
SCARA arm.

the product of an unknown constant vector, which is a
function of the unknown masses and moments of
inertia of the links and the payload, and a matrix
formed by known functions of xp, x&dquo;, and i,, where
i, = (d/dt)xv are the joint accelerations.

where W(xp, xv, Xv) is an n X r matrix and 0 is an
r X 1 vector of the unknown constant parameters. No-
tice that W(xp, xv, xv) is a linear function of xv’ We
also define:

where the vectors Xv and u will be defined in section 3,
and the conventions is eq. (4) are utilized in regard to
the Coriolis and centripetal acceleration vector.

2.2. Illustrative Example

Consider a two-link SCARA manipulator moving on
the horizontal plane [i.e., g(xp) = 0] shown in Figure 1.
The links are of uniform density and have lengths 1,
and 12. The masses and moments of inertia of the
links are m, , m2 , I, , and I2 , respectively. It can be
shown that the elements of the inertia matrix and the
Coriolis and centripetal acceleration vector are as fol-

lows :

Defining

and utilizing eq. (8), the following expression for the
W(x,, Xp, Xp, u) matrix is obtained

3. Manipulator Control Law and Its
Properties

The control objective is to force the manipulator to
track a set of given joint positions and velocities with
desirable dynamics. Let us denote the desired quanti-
ties by Xd(t) and Xd(t), respectively. Assume Xd(t) is
differentiable, and denote its derivative by xd(t). xit)
is referred to as the desired acceleration.
We first review the control scheme in Slotine and Li

(1986) and Sadegh and Horowitz (1987), and intro-
duce some additional properties of the control scheme.
This scheme employs an exact compensation for all
the nonlinearities in the manipulator dynamics.
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Fig. 2. Overall control sys-
tem block diagram.

3.1. Exact Compensation Control Law (ECCL)

Fixed Controller

The control algorithm is a fixed proportional plus
derivative (PD) controller plus a feedforward inertia,
Coriolis and centripital acceleration and gravity com-
pensator. The control task is performed by employing
an inner velocity and an outer position feedback loop.
The inner velocity feedback loop contains the adapta-
tion law, if desired. The outer feedback loop is a fixed
proportional position feedback.

Let e(t) denote the tracking error:

The model reference velocity for the inner loop is
obtained from the following linear dynamics:

Defining the error corresponding to the reference
and actual velocity to be:

the control law is given by:

where Fp = apI and F, = Opt are constant diagonal
positive definite gain matrices (ap, a,, > 0) and 6(t) is
an estimate of 9. (The diagonal structure of the gain
matrices is chosen for simplicity and poses no loss of
generality in the subsequent stability analysis.)

Employing the control law given by (19) in eq. (1)
we obtain the following error dynamics equation:

where

Wd is the sum of other possible inputs and/or distur-
bances to the manipulator.

Remark (i) In most of the early works on manipula-
tor adaptive control, the error dynamics is forced to
behave as a stable, linear, time-invariant system. This
is achieved by cancelling the Coriolis and centripetal
acceleration term, v(xp, xv), without properly account-
ing for the fact that this term and the time derivative
of the manipulator kinetic energy are related as follows
[e.g., see Koditschek (1984) and Arimoto and Miya-
zaki ( 1984)]:

and

As a result, one is forced to assume in the stability
analysis that the rate of change of the inertia matrix is
negligible as compared to the parameter adaptation
law response [i.e., (dldt)M(xp) = 0].

Remark (ii) In the approach pursued here, the error
dynamics given by eq. (20) is nonlinear. As will be
seen in the following theorem, the term v(xp, xv, e~),
whose structure is similar to the Coriolis and centripe-
tal acceleration term, cancels the effect of the inertia
matrix time derivative, (dldt) M(xp), in the Lyapunov
analysis. See also Slotine and Li (1986).
To summarize the properties of the error eq. (20),

we present the following theorem.
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Theorem 1

Consider the error system given by eq. (20); then:

The undisturbed (i.e., w = 0) closed-loop error system
is globally exponentially stable [i.e., both e&dquo;(t) and e(t)
converge to zero exponentially from a given initial
condition]. For definitions see Appendix (1).

PROOF

The proof of this theorem is based on the Lyapunov
approach. Let us first define a generalized error state
vector to be

and the maximum and minimum eigenvalues of M to
be

Define the Lyapunov function candidate as

V(t, e ) is a legitimate Lyapunov function candidate
since

From (20) and (24) we obtain

Rewriting the matrix M as

then

Notice that from eq. (27) and eq. (3), the third term in

eq. (26),

since the matrix

is skew symmetric.

where

Multiplying both sides of (29) by e7l and integrating,
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we obtain

Thus

Thus both e&dquo;(t) and e(t) converge to zero exponentially.
El

Corollary 1

The perturbed system (i.e., w,~ ~ 0) is Lp input/output
stable with respect to the pairs (Wd, ev) and (wd, e) for
all p E [1, 00], i.e., there exist positive constants al, a2,
9,, and fl2 such that:

For definitions see Appendix A. 
I

PROOF

In theorem (1) we proved that the undisturbed sys-
tem is globally exponentially stable. Following the
lines of Vidyasagar and Vannelli (1982), we can show
that the disturbance driven system is input/output
stable.

If Wd * 0, eq. (28) becomes

where arguments of V have been dropped for economy.
V’12 is differentiable except at (ev, e) = 0. For time

intervals in which (e ) = 0, the Lyapunov function is
identically equal to zero. Therefore we consider the
time intervals that (e ) # 0. Dividing eq. (36) by Y’~Z ~
0, we obtain

Multiplying both sides of inequality (37) by e(&dquo;I/2)t and
integrating, we obtain

where

The term Yd in eq. (38) is a convolution operator on

IWdl, and from well-known results in linear system
theory [see Desoer and Vidyasagar (1975)], we obtain

where

Exact Compensation Adaptation Law (ECAL)

To estimate the parameter vector 9, the following
adaptation law is utilized.
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Notice that in the parameter adaptation algorithm
(PAA), only the velocity error signal ev(t) is used.
Also, comparing with the method presented by Craig
et al. (1986), the acceleration input u(t) is used in the
PAAs instead of the joint accelerations i,,, which are
not measurable in most realistic applications, and no
matrix inversion is required in the control algorithm.

Theorem 2

For an error dynamics governed by eq. (22) with wd =
0, if the adaptive control law given (45) is used, then
the following properties hold:

(i~. The error between the desired and actual trajec-
tory converges asymptotically to zero, i.e.,

(ii). If id(t) is uniformly continuous almost every-
where, (for definition see Appendix A), then:
(a). lim W(Xp, Xv, i,, u) l§ = O.

t-+oo

(b). If, in addition, W(Xd, id, id) is persistently
exciting, then lim~~~ 9(t) = 0

W(Xd, Xd, id) is defined by eq. (7), except that xp, x~, 11
and i, are replaced by their desired counterparts.
The definition of persistent excitation is given in

Appendix A.

PROOF

(i)

Consider the system described by the error equation
eq. (20) and the PAA eq. (45). Define the Lyapunov
function candidate

In a similar fashion as in the proof of theorem (1)
we obtain:

From the parameter adaptation law, eq. (45), we obtain:

Therefore levi, lel and 101 are all bounded. Conse-
quently W(xp, Xv, xv, u) 9(t) is bounded and, from
standard adaptive control arguments [Narendra and
Valvani (1980)], the asymptotic convergence of ~e&dquo;(tj~,
le(t)l and lë(t)1 follows immediately. D
The proof of (ii) is in Appendix B.

3.2. Desired Compensation Control Law (DCCL)

In order to implement the adaptive controller de-
scribed above, one needs to calculate the elements of

W(xp, x~, 5Z,, u) in real time. As can be seen in the
example above, this procedure may be excessively time
consuming since it involves computations of highly
nonlinear functions of joint position and velocities.
Consequently the real-time implementation of such a
scheme is rather difficult. To overcome this difficulty,
we suggest replacing xp and Xd with their desired coun-
terparts, namely Xd and Xd, in the W(xp, x~, xv) ma-
trix defined by eq. (7).
The desired quantities are known in advance, and

therefore all their corresponding calculations can be
performed off line. Thus the real-time implementation
of the scheme becomes more feasible.
Our task is now to show that the above stability

properties can still be preserved.
The modified control law is given by

where

and 4§ is an estimate of 9. Also, f(ev, e) is an auxiliary
nonlinear feedback term with a constant gain to be
defined later. The role of this additional term is to

compensate for the additional error introduced by the
modification of the original adaptive controller.



82

Applying the control law given by eq. (49) to the
manipulator described by eq. (1), we obtain the fol-
lowing error dynamic equation:

where

and Wd is as defined previously.
As can be seen in equation (51), an additional error

aW{e&dquo;, e) is introduced. The following lemma pro-
vides explicit bounds on AW(e~, e).

Lemma 1

For the error system governed by eq. (51) the following
inequality holds:

where b,, b2, and b3 are all positive valued functions
that are bounded by the norm of their arguments.
Explicit relations are found in Appendix 1.

PROOF

See Appendix 1.
We now present the equivalent of theorem (1) for

the controller with desired compensation.

Theorem 3

For the error system governed by eq. (51 ), the results
of theorem (1) hold, provided:

i. f(e,.&dquo; e) is a nonlinear feedback given by

ii. (Jv, Op, and Q&dquo; are chosen sufficiently large.

PROOF

The proof is very similar to the proof of the theorem
1, except that in this case we choose a slightly different
Lyapunov function.
Choosing the Lyapunov function candidate

where

then similarly to the proof of the theorem (1), we have:

By using the expression for -e~TOW(e&dquo;, e) from
lemma 1 and the definition of f in (55), we obtain

Notice that 1M - XII ~ [(Am - ~.~, )/2], and by choosing
Q&dquo; - ( + Àp)b3, we obtain

where
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Fig. 3. Position response of
axis 2; the ECAL and DCAL
(case i). ---desired trajectory;
-actual trajectory.

Let us decompose Qv and crp into:

Consequently, Q can be decomposed into

where

It is always possible to choose <~, 6~ , and Ap such that
Q ~ O. Thus,

From this point on the proof of the theorem becomes
identical to the proof of theorem 1. To obtain the

Fig. 4. Velocity response of
axis 2; the ECAL and the
DCAL (case i). ---desired
trajectory; -actual trajec-
tory.

explicit quantities obtained in theorem 1, simply re-
place a, and (Jp by UV and 17P D

Corollary 2

The perturbed system (i.e., w ~ 0) is Lp input/output
stable with respect to the pairs (w, ev) and (w, e) for all
P E ~ 1, oo~.

Remark: Corollary 2 states that if our estimation of
the manipulator dynamics is not exact, the norm of
the resulting error will be proportional to the parame-
ter error norm and norm of other possible distur-
bances. Therefore it is an improvement over corollary
1, which allows only for bounded disturbances.

PROOF

Replace eq. (28) in theorem 1 by eq. (65). The re-
mainder of the proof is identical to the proof of corol-
lary 1. D

Desired Compensation Adaptation Law (DCAL)

The parameter update law is similar to the ECAL
except for the replacement of W(xp, Xp, it,, u) by
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Fig. 5. Parameter estimates
for the ECAL (case i).

Notice that the parameter adaptation law only con-
tains the desired trajectory quantities in its adaptation
signal. Therefore the adaptation signal W(xd, idi ’d)
may be calculated and stored off line. Additionally,
the adaptation law in eq. (66) is more robust to sto-
chastic disturbances than that of eq. (45). This is a
result of the fact that the matrix W(Xd, ’d, id) is not
contaminated with noise, hence avoiding noise corre-
lation between the error signal and the adaptation
signal.

Theorem 4

For an error dynamics governed by eq. (51 ) with wd =

0, if the conditions of theorem 3 are satisfied and the
adaptive control law given by eq. (66) is used, then the
results of theorem 2 hold.

PROOF

Define the Lyapunov function candidate

Fig. 6. Parameter estimates
for the DCAL (case i).

Similarly to the proofs of theorems 2 and 3, we obtain:

From the parameter adaptation law, eq. (66), we obtain:

The rest of the proof is identical to the proof of
theorem 3. Q

4. Simulation

Simulation studies were conducted for a two-degree-
of-freedom scara robot arm. The parameters of the
robot model used in the simulations are the ones of the
NSK robot at the University of California-Berkeley
Department of Mechanical Engineering Robotics Lab-
oratory (Fig. 1). Refer to section 2 for the manipula-
tor’s dynamic equation and its reparameterization.
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Fig. 7. Velocity response of
axis 2 for the ECAL (case ii).
---desired trajectory; -ac-
tual trajectory.

Fig. 8. Velocity response of
axis 2 for the DCAL (case
ii). ---desired trajectory;
-actual trajectory.

Simulation results revealed that the position and ve-
locity response of the second axis contained a larger
tracking error than those of the first axis. This is ex-
pected, since the same desired position and velocity
trajectories were chosen for both axes, and the second
axis has a smaller inertia than the first one. Hence the

Fig. 9. Parameter estimates
for the ECAL (case ii).

Fig. 10. Parameter estimates
for the DCAL (case ii).

second axis is more sensitive to unmodeled distur-
bances and parameter variations. We will therefore

only present the time response of the second axis and
omit the corresponding results for the first axis.
The following control gains were used in the simula-

tions : ap = 40, ap = 20, an = 10, and Åp = 5. Simula-
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Fig. 11. Position response of
axis 2 for the ECAL (case
iii). ---desired trajectory;
-actual trajectory.

Fig. 12. Position response of
axis 2 for the DCAL (case
üi). ---desired trajectory;
-actual trajectory.

tions were conducted for the following three cases:

Case i. Time varying load from 0 to 10 kg; no dis-
turbances (Figs. 3 - 6).

Case ii. Time varying load from 0 to 10 kg with
input and output sinusoidal disturbances.

Fig. 13. Velocity response of
axis 2 for the ECAL (case
iii). ---desired trajectory;
-actual trajectory.

Fig. 14. Velocity response of
axis 2 for the DCAL (case
iii). ---desired trajectory;
-actual trajectory.

Case iii. The same load and disturbances as in case

ii, but with a desired position trajectory that
converges to a constant (i.e., regulation
problem) (Figs. 11-16).
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Fig. 15. Parameter estimates
for the ECAL (case iii).

Simulation results show that the performance of the
ECAL and the DCAL are identical in case i. Both

position and velocity errors converge to zero, and the
estimated parameters converge to their true values.
With the addition of the disturbances in case ii, the
velocity and position response of the ECAL and the
DCAL still remain very close to the desired trajec-
tories. However, the estimated parameters in the
ECAL drift when the adaptation signal becomes con-
stant. No drifts occurs in the DCAL. Case iii shows
that the ECAL becomes unstable under the presence
of noise and a constant adaptation signal. The DCAL
maintains its stability and the parameters converge to
constant values.

5. Conclusion

Additional stability and robustness properties of the
adaptive scheme proposed by Sadegh and Horowitz
( 1987) were studied. Sufficient conditions for the con-
vergence of the parameter error to zero were also de-
rived.
A computationally efficient scheme, called in this

Fig. 16. Parameter estimates
for the DCAL (case iii).

article the desired compensation adaptation law
(DCAL), was introduced. The DCAL utilizes the de-
sired trajectory outputs instead of actual manipulator
outputs in the parameter adaptation algorithm and the
nonlinearity compensation controller. It was demon-
strated that the DCAL inherits the stability properties
of the original scheme, called in this article the exact
compensation adaptation law (ECAL). Simulation
studies revealed that the DCAL, in addition to being
more computationally efhcient, exhibits a better ro-
bustness with respect to disturbances, as compared
with the ECAL.

Appendix A

Definition 1: Vector Norm

For a vector w E Rn, we define the norm of w to be
the Euclidean norm, i.e.,
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Definition 2: Matrix Norm

For a matrix M C R-xn the norm is defined to be

Definition 3: Almost Everywhere Uniform Continuity
(a.e.u.c)

A function f(t) : R+ - Rn is said to be uniformly con-
tinuous almost everywhere i~fJ&dquo;for any given ta and any
given E there exist 6(e) such that:

I f(t) - f(to) ~ E for all t such that

Definition 4: Persistent Excitation

A matrix function W(t) : R+ -~ Rmx&dquo; (m C n) is said
to be persistently exciting (P.E.) if,~there exist a 6 > 0
and an a > 0 such that for all s E R+ we have:

Definition 5: Lp Function Norm

For a Lebesgue measurable function f(t) : R+ - Rn,
the Lp norm for p E [ 1, (0) is defined to be:

For p = 00 the norm is defined to be:

Definition 6: Exponential Stability [Bodson and Sastry
(1984)]

Consider a system represented by the differential
equation x = f (x, t, u).
i. x = 0 is an exponentially stable equilibrium point

of the unperturbed system (i.e., u = 0) iffthere
exist y and M > 0 such that for all to ~ 0 and t ~ to :

for any initial condition xo in some closed ball of
radius h > 0 centered at 0.

ii. The system is said to be globally exponentially
stable if eq. (A.6) holds for all xo belonging to the
set of allowable states.

Definition 7: Lp Stability

A dynamical system is said to be input/output Lp
stable with respect to the pair (u, y) iff there are posi-
tive constants a1 and az, such that:

Appendix B

Theorem 2, part ii

LEMMA

Let f(t) : R+ - Rn be a uniformly continuous almost
everywhere (u.c.a.e.) function; then for any po > 0:

PROOF

Suppose that tlim f(t) = 0, then
~&horbar;MO
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is immediate. We will now show that

implies lim f(t) = 0 by contradiction.
f&horbar;*00

Assume limt~W f(t} # 0; then there exists a K such
that, for any given t, there exists a t2 > t, for which we
have f(tx ) ~ > K. This implies that at least one of the
components of f (t2 ), say f ~(t2 ) I, > K/~. Without loss
of generality we may assumep(t2) > (K/~) > 0. No-
tice that the a.e. uniform continuity of f(t) implies a.e.
uniform continuity offl(t). Therefore without loss of
generality there exists a 6 < po such that f’(z) >
(K/2~) for all T E [t2, t2 + (5]. This implies:

But this contradicts the fact that limf~~ f ~+p f(z)dz = 0
for p = 6 < po, since t is any arbitrarily large positive
number. 0

PROOF OF PART (A) OF THEOREM 2

Denote W(xp, x~, Xp, u)ê(t) by f(t). If we can show
that limt_oo J§+P f(i)di = 0 for all positive p = some
po, then by the above lemma the proof is complete.

Rewriting eq. (20):

where

In part a of the theorem we showed that ea and e
converge to zero asymptotically. Thus f2(t) also con-
verges to zero and by the lemma we have

and utilizing integration by parts to integrateJ;.(t),

Thus,

Notice that 1vI(xp)(t) can be written as:

In part i of the theorem we showed that xn(t) is
bounded, which implies the boundedness of M(x p )(t).
Therefore the right side of inequality (B.4) converges
to zero, which means lim,-,. j~+p f2(z)dz = 0. Thus,
limt_ao J§+P f(i)di = 0, and by the above lemma the
proof is complete. 0

PROOF OF PART (B) OF THEOREM 2

First notice that W(Xd, id, jtd)() converges to zero,
since the right side of

converges to zero.

Let P(s, t) = J§W 51)W(I)dI Since W(Xd, xd, Xd) is
P.E., then for some t5 > 0 and all t, we have:

From integration by parts and the parameter adap-
tation law, it can be seen that:

Letting t = s + 6, the right side of the above equa-
tion converges to zero. Since P(s, s + ~5) ~ al > 0,
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then we conclude that 8(t) converges to zero asympto-
tically. D

PROOF OF LEMMA 1

In this lemma we show that by replacing
W(Xd, id, Xd) for W(xp, xv,:iv, u), the resulting error
~W(e&dquo;, e) is bounded by the errors &euro;~ and e. What

makes these bounds possible is the fact that both
M(xp) and v(xp, xv, xj are C°° functions of their vari-
ables. Moreover, the derivatives of these functions
with respect to xp are uniformly bounded. Therefore
we can apply the mean value theorem (MVT) (Mars-
den 1974) to obtain the difference between W(xd,
id, xd)8 and W(xp, xv, Xv, u)8. From eq. (53), it can
be seen that

Denoting each term inside the braces of eq. (A.1 ) by
t i , tz , and t ~ , respectively, we obtain

Applying the MVT to M(xp) we obtain

where the last expression was obtained from eq. (17).
Now by taking the norm of eq. (B.9), it can be seen that:

where

Similarly the second term of (B.8), t2, can be ex-
pressed as follows

Recalling that v;(x, Wj, w2 ) = w/Nj(Xp)W2’ then
e~~’t2 can be expressed as

where

Finally, the third term, which is caused by gravity,
can be rewritten using the MVT as

After taking the norm, we obtain

where

By adding up the three terms obtained above, we get
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where b, , b2 , and b3 are bounded by the following
quantities:

Appendix C 
_

Derivation of Eqs. (2) and (3)

Consider a n degree of freedom robotic manipulator
composed by revolute or prismatic joints. The equa-
tions of motion for the arm are given by eq. ( 1 ). All
the constraints in this system are holonomic and scler-
onomic and the joint positions vector xp is a general-
ized coordinate vector for this system (Rosemberg,
1977). Define the n X 1 generalized force vector by
«t). The kinetic energy of the system is given by

Eq. (1) can be derived using Lagrange’s equations of
motion.

Expanding the first two terms of eq. (C.2) we obtain

The last term in eq. (C.3) can expanded as follows

Combining eqs. (C.2)-(C.5) we obtain the desired
result:

where v{xp, xv) is given by eqs. (2) and (3).
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