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Abstract— The main results of Part I are summarized
and extended. The problems of rapidly decaying mainline
cost weights, non-zero on-ramp cost weights, and the lack
of on-ramp queue length constraints in the original formu-
lation are resolved by introducing two new assumptions:
1) congestion on the mainline does not spill onto the on-
ramps, and 2)rc

i = 0. A numerical example based on a 14-
mile stretch of a congested freeway is used to demonstrate
the technique. The example predicts a 8.4% savings in Total
Travel Time, with queue constraints, over the 5-hour peak
period.

I. I NTRODUCTION

On-ramp metering is a method of traffic control that
seeks to improve the performance of freeway systems
by regulating the flow of vehicles from the on-ramps.
The scope of thesystemmay be the freeway alone,
or it may include alternative routes. The improvement
in performanceis usually measured in terms of total
travel time savings. The task is an extremely delicate one
for several reasons. First, Zhang concluded in [1] that
freeways are best left uncontrolled (i.e. no improving
controllers exist) whenever they are either “uniformly
congested” or “uniformly uncongested”, meaning that
the state of congestion cannot be affected by on-ramp
control. This makes intuitive sense: metering an un-
congested freeway introduces unnecessary delays. How-
ever, even when the freeway is in a state of “mixed
congestion”, and can therefore benefit from on-ramp
control, there exist only a few mechanisms for reducing
travel time. Banks identified four in [2]: 1) increasing
bottleneck flow, 2) diverting traffic to alternative routes,
3) preventing accidents, and 4) preventing the obstruction
of off-ramps by congestion on the mainline. The second
and third mechanisms are difficult phenomena to model
and verify, and are not considered in this and many other
optimal control designs. Increasing bottleneck and off-
ramp flow, both related to the avoidance of mainline
congestion, are left as the two principle mechanisms for
optimizing travel time. However, congestion can only be
reduced by storing the surplus vehicles in the on-ramp
queues, and this often conflicts with the limited storage

available in the on-ramps. These can typically hold up
to 30 vehicles each, which is a small number compared
to the number of vehicles on a congested freeway. The
on-ramp metering problem is thus recognized as one of
careful allocation of on-ramp storage space and timely
release of vehicles. The example in this paper shows
that optimal travel time savings with limited on-ramp
storage is on the order of only a few percentage points.
Given the small margins, the quality of the numerical
solution becomes a very important factor, in addition to
the validity of the model and its calibration. Using a
local solution to the problem may in fact be detrimental
to system performance. In this paper we seek a global or
near-global solution by solving a relaxed linear problem.
The model and problem statements of Part I are reviewed
in Section II. Section III describes modifications and
enhancements to the original problem formulation and
solution. The technique is demonstrated in Section IV
with an example.

II. OVERVIEW OF PART I

Part I [3] described the Asymmetric Cell Transmission
Model (ACTM), the formulation of the nonlinear (PA)
and linear (PB) optimization problems, and sufficient
conditions on the cost weights of the objective function
for the two problems to have identical solution sets. The
sufficient conditions, given by Eqs. (23) and (24) in Part
I, required that(I + |En|) × K linear combinations of
the cost weights with(I + |En|) × K Maximal Worst-
Case Causal (MWCC) perturbations evaluate to negative
numbers. The causal nature of the MWCC perturbation
allowed the use of a simple backstepping method for
finding cost weights that met the conditions. A small
example tested the algorithm and exposed a couple
deficiencies in its solution. Below are reproduced some
of the important equations of Part I for reference in this
paper.

A. Notation

I : set of all freeway sections.I = {0 . . . I − 1}
K : set of time intervals.K = {0 . . . K − 1}



En : set of sections with on-ramps.En ⊆ I
En+: set of sections with metered on-ramps.En+ ⊆ En
ρi[k] : vehicles in sectioni at timek∆t.
li[k] : vehicles queueing in on-rampi at timek∆t.
fi[k] : vehicles going fromi to i+1 during intervalk.
ri[k] : vehicles enteringi from an on-ramp duringk.
rc
i [k] : metering rate for on-rampi.

di[k] : demand for on-rampi.
βi[k] : dimensionless split ratio for off-rampi.
vi : normalized freeflow speed∈ [0, 1]
wi : congestion wave speed∈ [0, 1]
ρ̄i : jam density [veh]
f̄i : mainline capacity [veh]
s̄i : off-ramp capacity [veh]
αi : influence parameter∈ [0, 1]
γi : influence parameter∈ [0, 1]
ξi : influence parameter∈ [0, 1]

δi ,
{

1 if i∈En
0 else

+1-1

-1 +1-2

Fig. 1. Interpretation of model variables.

B. Traffic Model

The four components of the ACTM are: (1) mainline
conservation, (2) on-ramp conservation, (3) mainline
flow, and (4) on-ramp flow. Off-ramp flows are modelled
as a known proportionβi[k] of the total flow leaving the
section.β̄i[k] is defined for convenience as1− βi[k].

ρi[k+1] = ρi[k] + fi−1[k] + δiri[k]− fi[k]/β̄i[k] (1)

li[k+1] = li[k] + di[k] − ri[k] (2)

fi[k] = min

{
β̄i[k]vi(ρi[k] + δiγiri[k]) ; f̄i ; (3)

wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] ;
β̄i[k]

βi[k]
s̄i

}

ri[k] = (4){
min

{
li[k]+di[k] ; ξi(ρ̄i−ρi[k]) ; rc

i [k]
}

i ∈ En+

min
{

li[k]+di[k] ; ξi(ρ̄i−ρi[k])
}

i ∈ En\En+

Parametersγi and αi determine, respectively, the in-
fluence of the on-ramp flow on mainline flows either
downstream or upstream of the on-ramp.ξi determines
the portion of available space on the freeway(ρ̄i−ρi[k])
that is allocated to vehicles entering from an on-ramp.
A portion wi of the total available space can be filled by
vehicles coming from an upstream freeway section.

C. Problem Formulation

The objective is to minimize a linear combination of on-
ramp and mainline flows called theGeneralized Total
Travel Time(gTTT):

gTTT , −
∑

k∈K

[∑

i∈I
ai[k]fi[k] +

∑

i∈En

bi[k]ri[k]

]
(5)

Minimizing the actual Total Travel Time (TTT) is equiv-
alent to minimizinggTTT with:

ai[k] =
{

(K−k) βi[k]/β̄i[k] i < I−1
(K− k)

(
βi[k]/β̄i[k] + 1

)
i = I−1 (6)

bi[k] = 0

The nonlinear and relaxed linear optimization problems
are stated below.

Problem PA: ψ∗A = arg min
ψ∈ΩA

gTTT(ψ) (7)

ΩA =
{

ψ = {ρi[k], li[k], fi[k], ri[k], rc
i [k]} :

Dynamic equations :(1), (2)
Concave fundamental diagram :(3)− (4),

Control bounds :rc
i ≤ rc

i [k] ≤ r̄c
i

}

Problem PB : ψ∗B = arg min
ψ∈ΩB

gTTT(ψ) (8)

ΩB =
{

ψ = {ρi[k], li[k], fi[k], ri[k], rc
i [k]} :

Dynamic equations :(1), (2),
Relaxed constitutive relations :(9)− (14),

Control bounds :rc
i ≤ rc

i [k] ≤ r̄c
i

}

∀ k∈K, i∈I:

fi[k] ≤ β̄i[k]vi(ρi[k] + δiγiri[k]) (9)

fi[k] ≤ wi+1(ρ̄i+1 − ρi+1[k]) − δi+1αi+1ri+1[k] (10)

fi[k] ≤ min

{
f̄i ;

β̄i[k]

βi[k]
s̄i

}
(11)

∀ k∈K , i∈En : ri[k] ≤ li[k] + di[k] (12)

ri[k] ≤ ξi(ρ̄i − ρi[k]) (13)

∀ k∈K , i∈En+ : ri[k] ≤ rc
i [k] (14)

D. The cost weights synthesis problem

The non-linearities in Eqs. (3) and (4) makePA difficult
to solve globally.PB on the other hand, is easy to solve,
but not necessarily useful to the solution ofPA. The
goal of the cost weights synthesis (CWS) problem is
to find weightsai[k] and bi[k] that render problemsPA

andPB equivalent(PA ≡ PB) , in the sense that their
solution sets are identical. Thus, whenPB is posed with



weights provided by the CWS, its global solution is also
the desired global solution toPA.

The CWS problem can be stated as having to find cost
weights such that any feasible pointψ in ΩB but not in
ΩA is not a minimizer of gTTT, and can therefore be
improved upon by some “upward” feasible perturbation.
The CWS problem was solved in Part I by dividing the
setΩB \ΩA into (I + |En|)×K subsets and defining a
Maximal Worst-Case Causal(MWCC) perturbation for
each subset, with the characteristic that the MWCC was
feasible for all points in its subset. The CWS problem
was thus reduced to finding cost weights such that each
of the (I + |En|) × K MWCC perturbations was also
an improvement ongTTT (Eqs. (23) and (24) in Part
I). A simple backstepping algorithm was designed for
computing the cost weights, based on thecausality of
the MWCC perturbation.

III. C HANGES TO THE ORIGINAL FORMULATION

A. Additional Assumptions

The example presented in Part I revealed two basic de-
ficiencies in the proposed solution to the CWS problem.
Ideally we would like the computed cost weights to equal
theTTT costs of Eq. (6). Short of that, we would at least
want the cost weights to be similar to Eq. (6) in some
quantifiable way. The weights of the example in Part I
differed from Eq. (6) in two ways: 1) theai[k]’s decayed
faster than a straight line, and 2) thebi[k]’s were not
identically zero (see Figure 3 in Part I).

A third deficiency, this one in the formulation of the
optimization problem, was the omission of upper bounds
on the on-ramp queue lengths:

li[k] ≤ l̄i , ∀ i∈I , k∈K (15)

The reason for excluding the queue length constraints
was that they made impossible the definition of a gen-
eralized feasible perturbation, such as the MWCC per-
turbation. To illustrate, considerψ a feasible candidate
solution to problemPB for which none of Eqs. (9)
through (11) are active for a particulari= ι andk =κ.
Such a candidate solution would be classified in Part I
as a member of Iικ. Assume also thatψ has:

fι+1[κ] = f̄ι+1

rι+1[κ+1] = ξi+1(ρ̄ι+1 − ρι+1[κ+1])
lι+1[κ+2] = l̄ι+1

In this situation, any positive perturbation tofι[κ] pro-
duces an increase inρι+1[κ+1], which in turn forces
rι+1[κ+1] to decrease, andlι+1[κ+2] to grow beyond̄lι+1.
We have demonstrated that no positive causal pertur-
bation exists that is feasible forall members of Iικ,
whenever queue length constraints are included.

Two additional assumptions are sufficient to remedy
these three shortcomings:

Assumption #1: Eq. (13) is not active in the optimal
solution for anyi or k.

In other words, we assume that congestion on the
mainline does not obstruct vehicles entering from the
on-ramps, when optimal metering is used. Obviously,
this assumption does not hold for every freeway. It
therefore limits the apllicability of the proposed con-
troller to freeways where it does – presumably most
well-designed freeways. The assumption permits the
removal of Eq. (13) from the problem statement, and
the “−ξi∆ρi[k]” terms from the definitions of̄∆I

ικ and
∆̄II

ικ (Eqs. (21) and (22) in Part I). Notice that then
∆ri[k]=∆li[k]=0 in ∆̄I

ικ, and∆li[k]≤0 in ∆̄II
ικ. There

is no longer a conflict between the MWCC perturbation
and the queue length constraint, which requires only
∆li[k]≤0. As we shall see in Section IV, this assumption
also eliminates the problem of rapidly decayingai[k]’s.
Section IV also shows that the assumption is not overly
restrictive, and in fact holds for the I-210 model.

Assumption #2: rc
i = 0.

We assume that the on-ramp meters are able to com-
pletely shut off on-ramp flow. This is never true in
practice: the actual minimum metering rate on I-210
is 180 vph, which corresponds to 1 vehicle every 20
seconds. The optimal control plan generated withrc

i = 0
must therefore be modified before implementation by
increasing all optimal metering rates to at least 180 vph.
This is presumably not too large a sacrifice on global
optimality. The assumption is useful because it enables
the formulation of the following simplified but equivalent
form of ProblemPB :

Problem PC : ψ∗C = arg min
ψ∈ΩC

gTTT(ψ) (16)

ΩC =
{

ψ = {ρi[k], li[k], fi[k], ri[k]} :

Dynamic equations :(1), (2),
Relaxed fundamental diagram :(9)− (11)

On-ramp flow constraints :(17)− (19)
}

∀ k∈K , i ∈ En\En+ : ri[k] = di[k] (17)

∀ k∈K , i∈En+ : ri[k] ≤ li[k] + di[k] (18)

∀ k∈K , i∈En+ : 0 ≤ ri[k] ≤ r̄c
i (19)

Having used Assumption #1 to eliminate Eq. (13) from
PB , the flow from uncontrolled on-ramps is now known
to equal the demand (Eq. (17)). Due to both assumptions,



the model for metered on-ramps becomes:

ri[k] = min {li[k] + di[k] , rc
i [k]} (20)

0 ≤ rc
i [k] ≤ r̄c

i (21)

rc
i [k] can be seen to be an unnecessary variable. It

appears nowhere else in the problem, and its only role
in Eqs. (20) and (21) is to limit the on-ramp flow to
no greater than̄rc

i . Furthermore, its value is somewhat
arbitrary: whenri[k] = li[k] + di[k] in Eq. (20),rc

i [k] can
be given any value betweenli[k] + di[k] and r̄c

i without
affecting the cost. A valid metering plan can be derived
once the solution toPC is found, with:

rc
i [k] = max{ ri[k] ; 180 vph } (22)

The main advantage ofPC over PB is that neither
metered nor uncontrolledri[k]’s in PC are required to fall
on their “upper boundary”. Perturbations tori[k]’s and
the resulting non-zerobi[k]’s are therefore not needed.

The CWS problem is solved for ProblemPC by
setting allbi[k]’s to zero, and computingai[k]’s with the
procedure developed in Part I, with̄∆I

ικ’s adjusted as
per Assumption #1.

B. Dual Time Scales

A modification to the original model that was found
useful for reducing the size of the LP problem, was to
consider different time intervals for the mainline and on-
ramp variables. Consistency of the mainline conservation
equation (Eq. (1)) requires:

vi∆tm ≤ Li ∀ i∈I
where∆tm is the duration of the discrete time interval,
and Li is the length of theith section. Consistency of
the on-ramp model (Eq. (2)) on the other hand, does not
depend on the duration of the time interval. The example
of Section IV uses a freeway partition with a shortest
section of 1000 ft. At a freeflow speed of 65 mph, this
corresponds to a maximum∆tm of 10.5 seconds. Most
freeway control systems only update the metering rates
at intervals of 1 to 5 minutes, making it unnecessary to
model the on-ramps at the faster rate.

The modified dual-scale ACTM assumes that the
on-ramp interval,∆to, is an integer multiple of∆tm,
with p , ∆to/∆tm. The modified model equations are
obtained by replacing theri[k] terms in Eqs. (1) and
(3) with ri[k]/p. To retain the important properties given
by the theorem of Part I, Eq. (4) must be modified by
including thep separateξi(ρ̄i − ρi[k])-like terms of the
upcoming∆to interval. That is,ri[k] at timet = k·∆to =
k ·p∆tm is computed as the minimum ofli[k]+di[k] and
minx{ξip(ρ̄i−ρi[x])}, with x = k·p . . . (k+1)p−1. This,
unfortunately, destroys the causality of the model, asri[k]

now depends on future values ofρi[x]. A specialized
iterative algorithm was created to integrate the non-
causal model equations.

IV. EXPERIMENTS AND RESULTS

In this section we report on simulation tests using the
suggested procedure for solving the CWS problem and
resulting LP problem, with the modifications outlined in
this paper. Model parameters and traffic data were taken
from a 14-mile stretch of Interstate 210 WB in Pasadena,
California. This site contains 20 metered on-ramps and
a single uncontrolled freeway connector from I-605 NB.
A speed contour plot constructed from loop detector data
is shown in Figure 2. The darker shaded areas indicate
average speeds below 40 mph. A study of the traffic
characteristics of this site [4] identified three recurring
bottlenecks. The severest of the three can be seen in the
contour plot to affect the first third of the test section
over a time period of about 4 hours (6:30 to 10:30 am).
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Fig. 2. Measured speed contour plot [mph]
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Fig. 3. Simulated uncontrolled contour

A manual calibration of the model parameters (vi,
wi, f̄i, s̄i, ρ̄i, αi, γi, ξi) was performed, with resulting
speed contour plot shown in Figure 3. The speed variable
used in Figure 3 was calculated with:

speedi[k] , fi[k]/β̄i[k]

ρi[k] + γi ri[k]/p

(
Li

∆tm

)
(23)

This equation ensures speedi[k] = vi when the freeway
section is free flowing.



The CWS and LP problems were solved for 1, 2 and
5-hour time horizons. In all cases, an additional half-
hour “cool-down” period was appended to the end of
the simulation period. The optimizations were performed
over the entire 1.5, 2.5, and 5.5 hour time windows.
During the cool-down period, all traffic demands were
set to zero, and the freeway was allowed to empty
completely.
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Fig. 4. Computed cost weights

The cost weights generated by the CWS problem,
with Assumptions #1 and #2, are shown in Figure 4.
As opposed to the result of Part I, these cost weights
have the desiredTTT-like properties of linear decay and
bi[k]≡0. The optimal solution to ProblemPC posed with
these weights is also a global solution toPA (with the
same objective), and probably a near-optimal controller
in terms ofTTT.

ProblemPC was solved using the commercial LP
solver MOSEK 3.0. Each of the three time horizons
was solved with and without on-ramp queue length
restrictions (Eq. (15)). The size of the problem ranged
from 92,310 constraints and 41,480 variables for the
1-hour problem without queue constraints, to 352,950
constraints and 158,600 variables for the 5-hour problem
with queue constraints. Percent improvements inTTT are
reported in Table I.TTT was calculated from the optimal
solution with the following formula:

TTT =
∑

k

∑

i∈I
ρi[k]∆tm +

∑

k

∑

i∈En

li[k]∆to (24)

This computation included the cool-down period. It was
confirmed in every case that the solution to the LP
problem satisfied the equations of the model to a high
degree of precision - i.e.ψ∗ ∈ ΩA.

The validity of the two assumptions was also con-
firmed. For Assumption #1, it was verified that the opti-
mal ri[k]’s never exceededξip(ρ̄i−ρi[x]). Assumption #2
was found to have little effect on the solution. This was
confirmed by generating animplementablemetering plan

from the optimal solution using Eq. (22). TheTTT for
the implementable plan was found by running it through
the model.TTT values for the optimal and implementable
controllers are shown in Table I. These results show that
increasing the minimum metering rate from 0 (optimal)
to 180 (implementable) induces only a small loss in
travel time savings (0.04% without queue constraints and
1.12% with queue constraints). It should be noted that
applying Eq. (22) can never cause the queue constraint
to be violated, since increasing the metering rate will
only make the queues shorter.

TABLE I

TRAVEL TIME SAVINGS AND RUN TIMES

Period TTT TTT % TTT %
[hr:min] no control optimal saved implem. saved

Without queue constraints
1:00 1,716 1,715 0.06% 1,716 0.00%
2:00 4,080 4,035 1.10% 4,036 1.08%
5:00 13,075 11,535 11.78% 11,540 11.74%

With queue constraints
1:00 1,716 1,715 0.06% 1,716 0.00%
2:00 4,080 4,053 0.66% 4,060 0.49%
5:00 13,075 11,824 9.56% 11,971 8.44%

It is also interesting to note that the 1-hour and 2-
hour time horizons yielded almost no improvement over
no control. This is because, as can be seen in Figure 3,
congestion only begins after the first hour, and starts to
dissipate in the fourth hour. These two experiments tend
to corroborate Zhang’s observations in [5]. The 1-hour
experiment demonstrates that an uncongested freeway
should not be metered. In the 2-hour case there is no
post-peak period. Hence, vehicles retained in the on-
ramps cannot be released without increasing congestion.
Not much can be gained by metering in these two situa-
tions. In the 5-hour experiment, however, the optimizer
is able to shift the surplus demand to the post-peak
period by holding vehicles on the on-ramps. Only the
5-hour time horizon produced a substantial improvement
over no control: 11.78% travel time savings without
queue constraints, and 9.56% with queue constraints.
This result also emphasizes the importance of using a
numerical technique that is efficient enough to produce
optimal plans for sufficiently long time horizons, within
a relatively short computation time.

Optimized speed contour plots and queue lengths for
the 5-hour experiments are shown in Figures 5 and 6.
Figure 5 shows that the optimal strategy, when on-ramp
queue lengths are left unrestricted, is to keep the freeway
almost completely uncongested by storing large numbers
of vehicles in the on-ramps. In this situation, one of the
on-ramp queues accumulates over 500 vehicles. Figure 6
shows that congestion cannot be avoided when the on-



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

00:00

01:00

02:00

03:00

04:00

05:00

Direction of traffic

T
im

e
 [

h
r]

O
n

-r
a

m
p

 q
u

e
u

e
 l
e

n
g

th
 [

v
e

h
]

Time [hr]

Fig. 5. Congestion and queue lengths without queue constraints.

ramp queues are limited to at most 50 vehicles. The
implementable metering plan nevertheless achieves a
reduction of 8.44% inTTT in this case.

V. CONCLUSIONS

This two part paper has outlined a complete methodology
for solving the feedforward optimal metering problem
efficiently and with near-global optimality. The unadul-
terated result was described in the first part, and was
found to have a few drawbacks. This second part has
focussed on solving those problems, and on testing the
approach on realistic freeway setup. The repairs required
the use of two additional assumptions. The first, that
congestion does not propagate from the mainline to the
on-ramps, can be easily verified in the optimal solution.
Future work will consider the question of what to do
if this assumption is temporarily violated. The second
assumption was that the on-ramp flows could be reduced
to zero by the on-ramp meters. This is never true,
but it was found to require only a small sacrifice of
global optimality. It was found that, under these two
assumptions, the cost weights generated by the CWS
problem were qualitatively similar to the values that
minimize total travel time, in that 1) the weights on the
mainline flows decayed linearly in time, and 2) the on-
ramp flow weights were all zero. Also, the assumptions
enabled the enforcement of queue length constraints, and
allowed the formulation of a simplified but equivalent
problem (PC).
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This technique has several advantages over many
other predictive on-ramp metering designs. First, it re-
quires only to solve a single linear program, which
can be done with extreme efficiency using any modern
LP solver. Second, it takes on-ramp storage constraints
explicitly into account. Finally, the optimal solution is
a guaranteed global optimum with respect to a cost
function that is qualitatively similar to total travel time.
We envision this methodology as part of a larger and
more robust traffic-responsive control structure. The
complete freeway control system will include the op-
timizer within a “rolling-horizon” framework, and will
update the model parameter values using the on-line
parameter estimation of [6], [7].
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