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Abstract—The main results of Part | are summarized available in the on-ramps. These can typically hold up
and extended. The problems of rapidly decaying mainline to 30 vehicles each, which is a small number compared
cost weights, non-zero on-ramp cost weights, and the lack 1, the number of vehicles on a congested freeway. The

of on-ramp queue length constraints in the original formu- teri bl is th >ed f
lation are resolved by introducing two new assumptions: on-ramp metering probiem IS thus recognized as one o

1) congestion on the mainline does not spill onto the on- careful allocation of on-ramp storage space and timely
ramps, and 2)r$ = 0. A numerical example based on a 14- release of vehicles. The example in this paper shows
mile stretch of a congested freeway is used to demonstrate that optimal travel time savings with limited on-ramp
the technique. The example predicts a 8.4% savings in Total giqraqe js on the order of only a few percentage points.
Travel Time, with queue constraints, over the 5-hour peak . . . .
period. leer_1 the small margins, the quality of the num_erlcal
solution becomes a very important factor, in addition to
the validity of the model and its calibration. Using a
local solution to the problem may in fact be detrimental
On-ramp metering is a method of traffic control thato system performance. In this paper we seek a global or
seeks to improve the performance of freeway systemear-global solution by solving a relaxed linear problem.
by regulating the flow of vehicles from the on-rampsThe model and problem statements of Part | are reviewed
The scope of thesystemmay be the freeway alone,in Section Il. Section Il describes modifications and
or it may include alternative routes. The improvemergnhancements to the original problem formulation and
in performanceis usually measured in terms of totalsolution. The technique is demonstrated in Section IV
travel time savings. The task is an extremely delicate ométh an example.
for several reasons. First, Zhang concluded in [1] that
freeways are best left uncontrolled (i.e. no improving
controllers exist) whenever they are either “uniformlyPart | [3] described the Asymmetric Cell Transmission
congested” or “uniformly uncongested”, meaning tha¥lodel (ACTM), the formulation of the nonlineafP})
the state of congestion cannot be affected by on-ramapd linear Pg) optimization problems, and sufficient
control. This makes intuitive sense: metering an urconditions on the cost weights of the objective function
congested freeway introduces unnecessary delays. Hdar-the two problems to have identical solution sets. The
ever, even when the freeway is in a state of “mixedufficient conditions, given by Egs. (23) and (24) in Part
congestion”, and can therefore benefit from on-ramip required that(Z + |En|) x K linear combinations of
control, there exist only a few mechanisms for reducintpe cost weights witHZ + |En|) x K Maximal Worst-
travel time. Banks identified four in [2]: 1) increasingCase Causal (MWCC) perturbations evaluate to negative
bottleneck flow, 2) diverting traffic to alternative routesnumbers. The causal nature of the MWCC perturbation
3) preventing accidents, and 4) preventing the obstructiatiowed the use of a simple backstepping method for
of off-ramps by congestion on the mainline. The secorfthding cost weights that met the conditions. A small
and third mechanisms are difficult phenomena to modekample tested the algorithm and exposed a couple
and verify, and are not considered in this and many otheeficiencies in its solution. Below are reproduced some
optimal control designs. Increasing bottleneck and oftf the important equations of Part | for reference in this
ramp flow, both related to the avoidance of mainlinpaper.
congestion, are left as the two principle mechanisms for i
optimizing travel time. However, congestion can only pe- Notation
reduced by storing the surplus vehicles in the on-ranp : set of all freeway sectiond = {0...1 — 1}
queues, and this often conflicts with the limited storag€ : set of time intervalsiC = {0...K — 1}

I. INTRODUCTION

Il. OVERVIEW OF PART |



En : set of sections with on-ramp&n C 7 C. Problem Formulation
EnT: set of sections with metered on-rampgat C £n
pilk]: vehicles in section at time kAt.

l;1x] : vehicles queueing in on-rampat time kAt.
filk] . vehicles going fromi to i+1 during intervalk.
r;[k] - vehicles entering from an on-ramp during:. N
r¢(k]: metering rate for on-ramp gTTT= — ) [Z ailkfilkl + ) bitkiritel | (5)
d;x: demand for on-ramp. ek

The objective is to minimize a linear combination of on-
ramp and mainline flows called th&eneralized Total
Travel Time(gTTT):

1€T i€€n

B;1x]: dimensionless split ratio for off-ramp Minimizing the actual Total Travel TimeT{T) is equiv-

v; : normalized freeflow speed|0, 1] alent to minimizinggTTT with:

w; : congestion wave speed(0, 1] [ (K=F) Biik/Bilm) i< I—1 6

pi +jam density [veh] 1 (K= k) (Biw/ Bk +1) i =1-1 ©

fi : mainline capacity [veh]

S . bifk] =0

3; . off-ramp capacity [veh]

a; : influence parametet [0, 1] The nonlinear and relaxed linear optimization problems

v; :influence parametet [0, 1] are stated below.

; . influence parametet [0, 1

¢ P 0, 1] Problem Ps: ¢} = arg wm})n gTTT(v)) @)
- €Qla

s { 1 if icén
0 else Oy = { b = {pilk], Lilkl, filk], ralk), 751K}
Dynamic equations (1), (2)

oLk Stk itk il .
fialh Zia a haly Concave fundamental diagranf3) — (4),
| A [ Z [ Y |
< . ¢ < s < e
//;_[k] Y ﬁz’[k‘]f . Control bounds r{ < r{[k < 75 }
d; [k]/, i B i Lkl

Problem Pg: 4} = arg min gTTT(v)) (8)
Fig. 1. Interpretation of model variables. YeQp

Qp = { Y = {pilk], Lilkl, filk], Tilk], iR}
B. Traffic Model Dynamic equations (1), (2),

The four components of the ACTM are: (1) mainline Relaxed constitutive relations(9) — (14),
conservation, (2) on-ramp conservation, (3) mainline c c c —c }

ontrol bounds r§ < ik < T
flow, and (4) on-ramp flow. Off-ramp flows are modelled Lismksr
as a known proportiog; (k] of the total flow leaving the V ke K,ieZ:
section.3;(x] is defined for convenience ds— [3;[x|

S - . fitk < Bilk1vi(pslk] + yirilk) )
Pillt] = pilk] + fica bl + Oirile] — filbl/ itk (1) filk) S wia (Pisa — pia k) — diaciprina(k]  (10)
Lilk+1] = Lilk] + dilk] — 73[k] (2) Bk
(- _ filk] <m|n{fz, "-} (1)
filk] = mln{ Bilklvi (pilk] + diyirilk]) 5 fi s ©)) Bi
~ Bilk] _ } Vkek,icEn: rik <Lkl + difk) (12)
Wit (Pin — Pipilk]) — Sipip ikl 5 ——35i B
[Bi[k] k) < &i(pi — pilk)) (13)
Tilk] = (4)
- + . , c
min{ Lk +dik] ; &(pi—pitk)) 5 750 b 0 € Ent VkeK , ieén™: Tilk] < 7y (K] (14)
min{ Lk +dilk] 5 &(pi—pilk]) } i € En\ENT D. The cost weights synthesis problem

Parametersy; and «; determine, respectively, the in-The non-linearities in Egs. (3) and (4) maRe difficult
fluence of the on-ramp flow on mainline flows eitheto solve globally.Ps on the other hand, is easy to solve,
downstream or upstream of the on-ranjp.determines but not necessarily useful to the solution Bfi. The
the portion of available space on the freeway—p;[x])) goal of the cost weights synthesis (CWS) problem is
that is allocated to vehicles entering from an on-rampo find weightsa;(x] and b;[x] that render problem®,

A portion w; of the total available space can be filled byand P equivalent(P4, = Pg) , in the sense that their
vehicles coming from an upstream freeway section. solution sets are identical. Thus, whgp is posed with



weights provided by the CWS, its global solution is also Two additional assumptions are sufficient to remedy
the desired global solution tB4. these three shortcomings:

_The CWS problem can b_e state_d as having to f|n_d CORtssumption #1 Eq. (13) is not active in the optimal
weights such that any feasible pointin 25 but notin ————— lution f Cor k
Q4 is not a minimizer of gTTT, and can therefore be solution for-any: or &.

improved upon by some “upward” feasible perturbationn other words, we assume that congestion on the
The CWS problem was solved in Part | by dividing thenainline does not obstruct vehicles entering from the
setQp \ Q4 into (Z +[En|) x K subsets and defining apn-ramps, when optimal metering is used. Obviously,
Maximal Worst-Case CausgMWCC) perturbation for this assumption does not hold for every freeway. It
each subset, with the characteristic that the MWCC waserefore limits the apllicability of the proposed con-
feasible for all points in its subset. The CWS problergoller to freeways where it does — presumably most
was thus reduced to finding cost weights such that eagfell-designed freeways. The assumption permits the
of the (Z + [€n]) x K MWCC perturbations was alsoremoval of Eq. (13) from the problem statement, and
an improvement orgTTT (Egs. (23) and (24) in Partthe “—¢;Ap;[x” terms from the definitions oA! . and

). A simple backstepping algorithm was designed foA!' (Egs. (21) and (22) in Part 1). Notice that then
computing the cost weights, based on tausalityof Ay, jx=Al; k=0 in A!_, andALx<0in A" There
the MWCC perturbation. is no longer a conflict between the MWCC perturbation
and the queue length constraint, which requires only
Al; k1 <0. As we shall see in Section 1V, this assumption
A. Additional Assumptions also eliminates the problem of rapidly decayingx)'s.

The example presented in Part | revealed two basic deection IV also shows that the assumption is not overly
ficiencies in the proposed solution to the CWS problerf€Strictive, and in fact holds for the I-210 model.

Ideally we would like the computed cost weights to equa] . .

the TTT costs of Eqg. (6). Short of that, we would at Ieas'w2 ri =0.

want the cost weights to be similar to Eq. (6) in som
guantifiable way. The weights of the example in Part
differed from Eq. (6) in two ways: 1) the;[x]'s decayed

[1l. CHANGES TO THE ORIGINAL FORMULATION

e assume that the on-ramp meters are able to com-
pletely shut off on-ramp flow. This is never true in
faster than a straight line, and 2) tlgk)'s were not practlce: the aqtual minimum metering r_ate on 1-210
. . . . is 180 vph, which corresponds to 1 vehicle every 20
identically zero (see Figure 3 in Part I). .

A third defici thi in the f lati f th seconds. The optimal control plan generated wjth= 0

Gimi Irt' € 'C'ETCy’ IS C;Ee n the. ormfualong irust therefore be modified before implementation by
op [{rrl:lza lon problem, Wlas tﬁ (?m|53|on Of upper boun ﬁcreasing all optimal metering rates to at least 180 vph.
on the on-ramp queue lengins. This is presumably not too large a sacrifice on global

Lik<l; , Viel, kek (15) optimality. The assumption is useful because it enables

. _the formulation of the following simplified but equivalent
The reason for excluding the queue length constraingsym of Problem?Ps:

was that they made impossible the definition of a gen-
eralized feasible perturbation, such as the MWCC péProblem Po:  ¢f = arg min gTTT(1)) (16)
turbation. To illustrate, considep a feasible candidate vehe

solution to problemPs for which none of Egs. (9) Q¢ = { = {pilk), Li[k], filkl, Tk}

through (11) are active for a particularE=. and k = .

Such a candidate solution would be classified in Part | Dynamic equations (1), (2),

as a member of,}. Assume also thap has: Relaxed fundamental diagram{9) — (11)
folel = font On-ramp flow constraints (17) — (19) }
et lnt1] = §a (Pt — pupaln+1))
lLals+2) =l VkeK, i€&n\Ent: 1k = dilk) (17)

In this situation, any positive perturbation fos pro- 7 k€K, i€€n™: rilk] < Lifk] +diie] - (18)

duces an increase ip,41(~+1], which in turn forces Vkek , ieén™ : 0 <rik <75 (29)

r,11[x+1] to decrease, ankl,; [x+2] to grow beyond, ;.

We have demonstrated that no positive causal pertitaving used Assumption #1 to eliminate Eq. (13) from
bation exists that is feasible fall members of J., Pz, the flow from uncontrolled on-ramps is now known
whenever queue length constraints are included. to equal the demand (Eqg. (17)). Due to both assumptions,



the model for metered on-ramps becomes: now depends on future values pfjz]. A specialized
) . iterative algorithm was created to integrate the non-
ritk) = min {Lik] + dilk] , R} (20)  causal model equations.
0<réw < 7 (1)
IV. EXPERIMENTS AND RESULTS

appears nowhere else in the problem, and its only roéthis section we report on simulation tests using the
X . M ’ f lving the CW I
in Egs. (20) and (21) is to limit the on-ramp flow to ggested procedure for solving the CWS problem and

. . . resulting LP problem, with the modifications outlined in
no great.er tham?. Furthermore, .|ts value is iomeWhaEhis paper. Model parameters and traffic data were taken
arbitrary: whenr; k] = Lk} + d;[x] in Eq. (202;7%' ] €N from a 14-mile stretch of Interstate 210 WB in Pasadena,
be given any value betv_vednk] + di[) and W'thOUt. alifornia. This site contains 20 metered on-ramps and
affecting the cpst. A Va.“d meterlng plan can be derlve§ single uncontrolled freeway connector from 1-605 NB.
once the solution @ is found, with: A speed contour plot constructed from loop detector data

¢k = max{ ;%] ; 180 vph} (22) is shown in Figure 2. The darker shaded areas indicate
average speeds below 40 mph. A study of the traffic
The main advantage ofx over P is that neither characteristics of this site [4] identified three recurring
metered nor uncontrolled x)'s in P are required to fall bottlenecks. The severest of the three can be seen in the
on their “upper boundary”. Perturbations t9x’s and contour plot to affect the first third of the test section
the resulting non-zeré;(x's are therefore not needed. over a time period of about 4 hours (6:30 to 10:30 am).
The CWS problem is solved for Problef: by
setting allb;[x)'s to zero, and computing;[x)'s with the
procedure developed in Part |, with! 's adjusted as o0
per Assumption #1.

r{[k] can be seen to be an unnecessary variable.!b
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A modification to the original model that was found

useful for reducing the size of the LP problem, was to *®
consider different time intervals for the mainline and on-
ramp variables. Consistency of the mainline conservation Direction of traffic. ——>
equation (Eqg. (1)) requires:

Fig. 2. Measured speed contour plot [mph]
vilAt, < L; Viel

00:00 - =

where At,,, is the duration of the discrete time interval,
and L; is the length of theith section. Consistency of -
the on-ramp model (Eqg. (2)) on the other hand, does not
depend on the duration of the time interval. The examplg -
of Section IV uses a freeway partition with a shortesg
section of 1000 ft. At a freeflow speed of 65 mph, this ="
corresponds to a maximudt,, of 10.5 seconds. Most .
freeway control systems only update the metering rates
at intervals of 1 to 5 minutes, making it unnecessary to - oo -
model the on-ramps at the faster rate. Direction of raffic ——>

The modified dual-scale ACTM assumes that the Fig. 3. Simulated uncontrolled contour
on-ramp interval,At,, is an integer multiple ofAt,,,
with p £ At,/At,,. The modified model equations are A manual calibration of the model parametets, (
obtained by replacing the;[x] terms in Eqgs. (1) and w;, f;, 5, pi, a4, i, &) Was performed, with resulting
(3) with 7;[x]/p. To retain the important properties giverspeed contour plot shown in Figure 3. The speed variable
by the theorem of Part I, Eq. (4) must be modified bysed in Figure 3 was calculated with:
including thep separate;(p; — pilx))-like terms of the 1)/ 5s I.
upcomingAt, interval. Thatisy;(x] attimet = k-At, = speeglk] = Jilk)/ Bilk] ( : ) (23)
k-pAt,, is computed as the minimum &fix] + d;x and pilk] + i Tilk]/p \ At
min, {&p(p;—pile]) }, Withz = k-p... (k+1)p—1. This, This equation ensures spegf= v; when the freeway
unfortunately, destroys the causality of the model;;as section is free flowing.




The CWS and LP problems were solved for 1, 2 anflom the optimal solution using Eq. (22). ThET for
5-hour time horizons. In all cases, an additional halthe implementable plan was found by running it through
hour “cool-down” period was appended to the end dhe modelTTT values for the optimal and implementable
the simulation period. The optimizations were performecbntrollers are shown in Table I. These results show that
over the entire 1.5, 2.5, and 5.5 hour time windowsncreasing the minimum metering rate from 0 (optimal)
During the cool-down period, all traffic demands weréo 180 (implementable) induces only a small loss in
set to zero, and the freeway was allowed to emptyavel time savings (0.04% without queue constraints and
1.12% with queue constraints). It should be noted that
applying Eq. (22) can never cause the queue constraint
to be violated, since increasing the metering rate will

completely.

a;[k]

TABLE |

only make the queues shorter.

TRAVEL TIME SAVINGS AND RUN TIMES

Period TTT TTT % TTT %

[hr:min] | no control | optimal saved| implem. saved
= Without queue constraints
= o0 1:00 1,716 1,715 0.06% 1,716 0.00%
2:00 4,080 4,035 1.10% 4,036 1.08%
05 5:00 13,075 | 11,535 11.78%| 11,540 11.74%
o 05 1 15 %fme [hra] 35 45 5 With queue constraints

1:00 1,716 1,715 0.06% 1,716 0.00%

. . 2:00 4,080 4,053 0.66% 4,060 0.49%
Fig. 4. Computed cost weights 5:00 13,075| 11,824  9.56%| 11971  8.44%

The cost weights generated by the CWS problem,
with Assumptions #1 and #2, are shown in Figure 4. It is also interesting to note that the 1-hour and 2-
As opposed to the result of Part |, these cost weighi@ur time horizons yielded almost no improvement over
have the desire@TT-like properties of linear decay andno control. This is because, as can be seen in Figure 3,
b;[x]=0. The optimal solution to Problef&- posed with congestion only begins after the first hour, and starts to
these weights is also a global solution7 (with the dissipate in the fourth hour. These two experiments tend
same objective), and probably a near-optimal controllé® corroborate Zhang's observations in [5]. The 1-hour
in terms ofTTT. experiment demonstrates that an uncongested freeway

Problem P~ was solved using the commercial LPshould not be metered. In the 2-hour case there is no
solver MOSEK 3.0. Each of the three time horizonBOSt-peak period. Hence, vehicles retained in the on-
was solved with and without on-ramp queue lengtf@RMPS cannot be released without increasing congestion.
restrictions (Eq. (15)). The size of the problem ranged0t much can be gained by metering in these two situa-
from 92,310 constraints and 41,480 variables for tHéNS. In the 5-hour experiment, however, the optimizer
1-hour problem without queue constraints, to 352,958 able to shift the surplus demand to the post-peak
constraints and 158,600 variables for the 5-hour problepgriod by holding vehicles on the on-ramps. Only the
with queue constraints. Percent improvementsTin are 5-hour time horizon produced a substantial improvement

reported in Table ITTT was calculated from the optimal Over no control: 11.78% travel time savings without
solution with the following formula: gueue constraints, and 9.56% with queue constraints.

This result also emphasizes the importance of using a
TTT = Z Zpi[k]Atm + Z Z lilk] At numerical technique that is efficient enough to produce
ki€l k i€fn optimal plans for sufficiently long time horizons, within
This computation included the cool-down period. It waa relatively short computation time.
confirmed in every case that the solution to the LP Optimized speed contour plots and queue lengths for
problem satisfied the equations of the model to a highe 5-hour experiments are shown in Figures 5 and 6.
degree of precision - i.a)* € Q4. Figure 5 shows that the optimal strategy, when on-ramp
The validity of the two assumptions was also congueue lengths are left unrestricted, is to keep the freeway
firmed. For Assumption #1, it was verified that the optialmost completely uncongested by storing large numbers
malr;[k]'s never exceedegl p(p; — p;[=]). Assumption #2 of vehicles in the on-ramps. In this situation, one of the
was found to have little effect on the solution. This wasn-ramp queues accumulates over 500 vehicles. Figure 6
confirmed by generating amplementablenetering plan shows that congestion cannot be avoided when the on-

(24)
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Fig. 5. Congestion and queue lengths without queue constraints. Fig. 6. Congestion and queue lengths with queue constraints.

ramp queues are limited to at most 50 vehicles. The This technique has several advantages over many
implementable metering plan nevertheless achievesoter predictive on-ramp metering designs. First, it re-

reduction of 8.44% irTTT in this case. quires only to solve a single linear program, which
can be done with extreme efficiency using any modern
V. CONCLUSIONS LP solver. Second, it takes on-ramp storage constraints

explicitly into account. Finally, the optimal solution is
This two part paper has outlined a complete methodology guaranteed global optimum with respect to a cost
for solving the feedforward optimal metering problenfunction that is qualitatively similar to total travel time.
efficiently and with near-global optimality. The unadul\We envision this methodology as part of a larger and
terated result was described in the first part, and wasore robust traffic-responsive control structure. The
found to have a few drawbacks. This second part hasmplete freeway control system will include the op-
focussed on solving those problems, and on testing thmizer within a “rolling-horizon” framework, and will
approach on realistic freeway setup. The repairs requiragdate the model parameter values using the on-line
the use of two additional assumptions. The first, th@arameter estimation of [6], [7].
congestion does not propagate from the mainline to the
on-ramps, can be easily verified in the optimal solution. REFERENCES
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