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Abstract 

 

This paper presents a new adaptive operation strategy that can identify and, in an adaptive 

fashion, compensate for most fabrication defects and perturbations affecting the behavior 

of a MEMS z-axis gyroscope. The convergence and resolution analysis presented in paper 

shows that the proposed adaptive controlled scheme offers several advantages over 

conventional modes of operation. These advantages include a larger operational bandwidth,  

absence of zero-rate output, self-calibration and a large robustness to parameter variations, 

which are caused by fabrication defects and ambient conditions. 
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I. INTRODUCTION 

Gyroscopes are commonly used sensors for measuring angular velocity in many areas of 

applications such as navigation, homing, and control stabilization. Although, conventional 

rotating wheel, fiber optic and ring laser gyroscopes have dominated a wide range of 

applications, they are too large and, most often too expensive to be used in most emerging 

applications. 

Recent advances in micro-machining technology have made the design and fabrication of 

MEMS (Micro-Electro-Mechanical Systems) gyroscopes possible. These devices are 

several orders of magnitude smaller than conventional mechanical gyroscopes, and can be 

fabricated in large quantities by batch processes. Thus, there is great potential to 

significantly reduce their fabrication cost. The emergence of MEMS gyroscopes is opening 

up new market opportunities and applications in the area of low-cost to medium 

performance inertial devices, including consumer electronics such as virtual reality, video 

games, 3D mouse and camcorder image stabilization; automotive applications such as ride 

stabilization, rollover detection and other vehicle safety systems; GPS augmentation such 

as MEMS inertial navigation sensor imbedded GPS; as well as a wide range of new 

military applications such as micro airplanes and satellite controls. 

The design and fabrication of MEMS gyroscopes has been the subject of extensive 

research over the past few years. [1] contains a comprehensive review of previous efforts 

in developing high quality cost-effective gyroscopes. Also noted in [1] is the fact that the 

cost of MEMS gyroscopes is decreasing while their accuracy is continuously being 

improved. Existing forecasts have indicated that this trend will continue. 
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All MEMS gyroscopes are laminar vibratory mechanical structures fabricated on 

polysilicon or crystal silicon. Common fabrication steps include bulk micromachining, 

wafer-to-wafer bonding, surface micromachining, and high aspect ratio micromachining. 

Each of these fabrication steps involves multiple process steps such as deposition, etching 

and patterning of materials. In practice, small imperfections always occur during the 

fabrication process. Depending on the technology used, different numbers of steps may be 

involved in the fabrication of a MEMS gyroscope, and different fabrication tolerances can 

be achieved. Generally, every fabrication step contributes to imperfections in the 

gyroscope [2]. Fabrication imperfections that produce asymmetric structures, mis-

alignment of actuation mechanism and deviations of the center of mass from the geometric 

center, result in undesirable, systematic perturbations in the form of mechanical and 

electrostatic forces, which degrade the performance of a gyroscope. Resolution, drift, scale 

factor and zero-rate output (ZRO) are important factors that determine the gyroscope 

performance [1,3]. Geometrical imperfections as well as electrical coupling cause 

degradation of these performance indexes. As a consequence, some kind of control is 

essential for improving the performance and stability of MEMS gyroscopes, by effectively 

canceling “parasitic” effects. Traditionally, mechanical or electrical balanc ing has been 

used to cancel parasitic effects [4-6]. Although this procedure reduces the effect of a 

certain amount of imperfections, it is time consuming, expensive and difficult to perform 

on small, nail- size (mm level) gyroscopes. Moreover, this procedure is performed for a 

single operating condition. Variations in temperature and pressure may take place during 

the operation of the gyroscope, which affect parasitic effects. 
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The control law for MEMS gyroscopes may be designed so as to estimate the angular rate 

directly or indirectly, depending on the operation mode. The operation mode is the 

operating topology of the gyroscope regarding its electro-mechanical design, its internal 

dynamics, how to manage its imperfections and environment variations and what sensing 

resources are to use to measure the gyroscope motion. The performance and accuracy of 

the gyroscope depends on the operation mode and corresponding control law design.  

Controls for MEMS gyroscopes are still theoretically immature. In terms of auto matic 

controls, two different types of controllers have been proposed for conventional mode of 

operation in the literature. One is a Kalman filter based preview control [7] and the other is 

a recently published force-balancing feedback control scheme using sigma-delta 

modulation [8]. Although these feedback control techniques increase the bandwidth and 

dynamic range of the gyroscope beyond the open- loop mode of operation, they still are 

sensitive to parameter variations such as damping, spring constant and quadrature error 

variations, produce ZRO and require tedious calibrations. 

The objective of this paper is to develop a new gyroscope operation mode, and to formulate 

a corresponding control algorithm that is well suited for the on-line compensation of 

imperfects and to operate in varying environments that affect the behavior of a MEMS 

gyroscope. The adaptive controlled gyroscope is self-calibrating, compensates for friction 

forces, and fabrication imperfections which normally cause quadrature errors, and produces 

an unbiased angular velocity measurement that has no ZRO. 

In the next section, the dynamics of MEMS gyroscopes is developed and analyzed, by 

accounting for the effect of fabrication imperfections. The conventional operation modes 
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such as open-loop and closed- loop modes, is reviewed in section III. An adaptive control 

approach for measuring angular rate is proposed as a new operation mode, and the 

convergence and resolution analysis of the proposed adaptive controlled gyroscope is 

presented in sections IV and V. Finally, computer simulations are performed in section VI. 

 

II. DYNAMICS OF MEMS GYROSCOPES  

Common MEMS vibratory gyroscope configurations include a proof mass suspended by 

spring suspensions, and electrostatic actuations and sensing mechanisms for forcing an 

oscillatory motion and sensing the position and velocity of the proof mass. These 

mechanical components can be modeled as a mass, spring and damper system. The mass in 

a vibratory gyroscope is generally constrained to move either linearly or angularly. In this 

paper, only linear vibratory gyroscopes are discussed. However, most of the results of this 

paper are applicable to angular vibratory gyroscopes as well.  

Figure 1 shows a simplified model of a MEMS gyroscope having two degrees of freedom 

in the associated Cartesian reference frames. Assuming that the motion of the proof mass is 

constrained to be only along the x-y plane by making the spring stiffness in the z direction 

much larger than in the x and y directions, the measured angular rate is almost constant 

over a long enough time interval, and linear accelerations are cancelled out, either as an 

offset from the output response or by applying counter-control forces, the equation of 

motion of a gyroscope is simplified as follows. 
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where x and y are the coordinates of the proof mass relative to the gyro frame, 2,1d , 2,1k  are 

damping and spring coefficients, zyx ,,Ω  are the angular velocity components along each 

axis of the gyro frame, and yx ,τ  are control forces. The two last terms in Eq. (1), xm z &Ω2  

and ym z &Ω2 , are due to the Coriolis forces and are the terms which are used to measure the 

angular rate zΩ .  

As seen in (1), in an ideal gyroscope, only the component of the angular rate along the z-

axis, Ωz, causes a dynamic coupling between the x and y axes, under the assumption that 

022 ≈ΩΩ≈Ω≈Ω yxyx . In practice, however, small fabrication imperfections always occur, 

and also cause dynamic coupling between the x and y axes through the asymmetric spring 

and damping terms. These are major factors which limit the performance of MEMS 

gyroscopes. Taking into account fabrication imperfections, the dynamic equations (1) are 

modified as follows [9]. 
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Equation (2) is the governing equation for a z-axis MEMS gyroscope. Fabrication 

imperfections contribute mainly to the asymmetric spring and damping terms, xyk  and xyd . 

Therefore these terms are unknown, but can be assumed to be small. The x and y axes 

spring and damping terms are mostly known, but have small unknown variations from their 

nominal values. The proof mass can be determined very accurately. The components of 
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angular rate along x and y axes are absorbed as part of the spring terms as unknown 

variations. Note that the spring coefficients kxx and kyy also include the electrostatic spring 

softness. 

Non-dimensionalizing the equations of motion of a gyroscope is useful because the 

numerical simulation is easy, even under the existence of large two time-scales differences 

in gyroscope dynamics. One time scale is defined by the resonant natural frequency of the 

gyroscope, mk xx / , the other by the applied angular rate zΩ . Nondimensionalization also 

produces a unified mathematical formulation for a large variety of gyroscope designs. In 

this paper, controllers will be designed based on non-dimensional equations. The 

realization to a dimensional control for the specific gyroscope can be easily accomplished 

by multiplying the dimensionalizing parameters by the non-dimensional controller 

parameters. Based on m ,  0q and  0ω , which are a reference mass, length and natural 

resonance frequency respectively, where m  is a proof mass of the gyroscope, the non-

dimensionalization of (2) can be done as follows: 
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where xQ  and yQ  are respectively the x and y axis quality factor, )/( 2
0ωω mk xxx = , 

)/( 2
0ωω mk yyy = , )/( 2

0ωω mk xyxy = , )/( 0ωmdd xyxy ← , 0/ωzz Ω←Ω , 

)/( 0
2
0 qmxx ωττ ←  and )/( 0

2
0 qmyy ωττ ← .  
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The natural frequency of the x or y axis can be used to define the nondimensionalizing 

parameter 0ω . Since the usual displacement range of the MEMS gyroscope in each axis is 

sub-micrometer level, it is reasonable to choose m 1µ  as a reference length  0q . 

Considering that the usual natural frequency of each of the axis of a vibratory MEMS 

gyroscope is in the KHz range, while the applied angular rate may be in the degrees per 

second or degrees per hour range, the non-dimensional angular rate that we want to 

estimate is respectively in the range of 410−  or 1010− . 

 

III. CONVENTIONAL MODE OF OPERATION 

The conventional mode of operation reduces to driving one of the modes of the gyroscope 

into a known oscillatory motion and then detecting the Coriolis acceleration coupling along 

the sense mode of vibration, which is orthogonal to the driven mode. The response of the 

sense mode of vibration provides information about the applied angular velocity. More 

specifically, the  proof mass is driven into a constant amplitude oscillatory motion along the 

x-axis (drive axis) by the x-axis control xτ . When the gyroscope is subjected to an angular 

rotation, a Coriolis inertial specific force, xz &Ω− 2 , is generated along the y-axis (sense 

axis), whose magnitude is proportional to the oscillation velocity of the drive axis and the 

magnitude of z-axis component of angular rate. This force excites the proof mass into an 

oscillatory motion along the y-axis, and its magnitude is amplified according to the 

mechanical quality factor (Q- factor). Mathematically speaking, the governing equation for 

the conventional mode of operation is described as follows: 
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The conventional mode of operation is classified into the open-loop mode and the closed-

loop mode. The main difference between the closed- loop and open- loop mode of operation 

lies in that in the former the displacement of the sense axis is controlled to zero, while in 

the latter it is measured. 

Most MEMS gyroscopes are currently operated in the open- loop mode. The main 

advantage of open- loop mode of operation is that circuitry used for the operation of 

gyroscope in this mode is simpler than in the other modes, since there is no control action 

in the sense axis. Thus, this mode can be implemented relatively easily and cheaply. 

However, under an open- loop mode of operation, the gyroscope’s angular rate scale factor 

is very sensitive, and not constant over any appreciable bandwidth, to fabrication defects 

and environment variations. Therefore, the application areas for the open- loop mode are 

limited to those which require low-cost and low-performance gyroscopes. 

In contrast to the open-loop mode of operation, in the closed- loop mode of operation, the 

sense amplitude of oscillation is continuously monitored and driven to zero. As a 

consequence, the bandwidth and dynamic range of the gyroscope can be greatly increased 

beyond what can be achieved with the open-loop mode of operation. However, under 

conventional closed-loop mode of operatio n, it is difficult to ensure a constant noise 

performance, in the face of environment variations such as temperature changes, unless an 

on- line mode tuning scheme is included. Moreover, there are practical difficulties in 
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designing a feedback controller so  that the closed- loop system is stable and sufficiently 

robust, for gyroscopes with high Q systems. Therefore, the application areas for 

conventional closed-loop mode of operation are those which requires medium-cost and 

medium-performance (large bandwidth but limited resolution) gyroscopes. 

Both the open- loop and closed-loop modes are inherently sensitive to some types of 

fabrication imperfections which can be modeled as the cross-damping term xyd , which 

produce ZRO.  

The detrimental effect of the asymmetric damping term xyd  on gyroscope performance has 

not been considered by many researchers so far. However, its effect should not be 

underestimated. For example, using typical conventional gyroscope parameters adopted 

from Clark [4], various angular rate equivalent tilt angles κ  between the principal and 

physical damping axes yield Table 1. The values of 510=xω  rad/sec, 410=xQ  and 

310=yQ  were used in calculating this table. Moreover, with the conventional modes of 

operation, it is also very difficult to identify and compensate for all fabrication 

imperfections in an on-line fashion, due to the simple internal dynamics of the gyroscope 

when is operating under these modes. One solution to achieve on- line compensation of 

fabrication imperfections may be to create a richer gyroscope dynamics than can be 

achieved in the conventional modes of operation. This idea led us to formulate a new 

operation strategy in which the two oscillatory modes of the z-axis gyroscope are not 

matched. 
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κ (deg) zΩ  

1.00 45.0 deg/sec 

0.022 1.0 deg/sec 

5101 −×  1.6 deg/hour 

 

Table 1. Angular rate equivalent tilt angle κ   
between the principal and physical damping axes 

 

IV. NEW ADAPTIVE MODE OF OPERATION 

This section proposes a new operating strategy for MEMS gyroscopes, which will be 

referred to as the adaptive mode of operation. Its aim is to achieve (1) on- line 

compensation of fabrication imperfections, (2) closed-loop identification of the angular 

rate, (3) to attain a large bandwidth and dynamic range, and (4) self-calibration operation. 

Proposed adaptive mode of operation will operate based on observer-based adaptive 

control algorithm which needs only position measurements of the proof mass of the 

gyroscope. Since observer-based adaptive control is the extension of the adaptive control 

based on velocity measurement, we first briefly present basic idea and control a lgorithm of 

it. 
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A. Velocity Measurement-Based Adaptive Control 

The basic idea of the adaptive control approach is to treat the angular rate, along with the 

effect of fabrication defects, as an unknown gyroscope parameter, which must be estimated 

using a parameter adaptation algorithm (PAA). 

The adaptive control problems of the gyroscope is formalized as follows:  given the 

equation with unknown constant parameters D , K  and Ω , 

      qKqqDq &&&&      Ω−=++ 2τ                                                            (5) 
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determine the control law τ  based on measuring q  and q& , such that the dynamic range is 

constrained within an intended region and Ω  is estimated correctly. With this kind of 

problem formulation, we treat the gyroscope as a multi-dimensional dynamic device. 

Like in other adaptive control problems, the persistent excitation condition is an important 

factor to estimate the angular rate correctly. To solve this problem, a trajectory following 

approach is used. The reference trajectory that the gyroscope must follow is generated such 

that the persistent excitation condition is met. Suppose that a reference trajectory is 

generated by an ideal oscillator and that the control objective is to make trajectory of real 

gyroscopes follow that of the reference model. The reference model is defined as 

  0     =+ mmm qKq&&                                                          (6) 



J. of Dynamic Systems, Measurement, and Control: Sungsu Park and Roberto Horowitz  13 

where },{ 2
2

2
1 ωωdiagK m =  are the reference resonant modes of both axis. We present 

following two theorems whose proof may be found in [10]. 

 

Theorem 1 (Stability) 

With following control law (7) and parameter adaptation laws (8), the trajectory error 

mp qqe −= , and its time derivative pe&  and pe&&  converge globally and exponentially to zero.  

 0
ˆ2ˆˆ ττ +Ω++= mmm qqRqD &&                                                 (7) 
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where mKKR −= , Ω̂,̂,̂ RD  are estimates of D, R and Ω , pe&γτ −=0  and 

},{ 21 γγγ diag= . 

 

Theorem 2 (Persistent excitation condition) 

With control law (7) and parameter adaptation laws (8), if the gyroscope is controlled to 

follow the mode-unmatched reference model, i.e. 21 ωω ≠ , the persistent excitation 

condition is satisfied and all unknown gyroscope parameters, including the angular rate, are 

estimated correctly. 
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Theorems 1 and 2 show that the motion of a mode-unmatched gyroscope, in which the 

resonance frequency of the x-axis is different from that of the y-axis, has sufficient 

persistence of excitation to permit the identification of all major fabrication imperfections 

as well as “input” angular rate. This means that adaptive controlled gyroscope has no ZRO 

and is self-calibrating. 

B.  Velocity Observer-Based Adaptive Control 

The position and velocity measurements are corrupted by electrical noise in the sensing 

circuit. The analysis of the stochastic properties of the sensing noises, as well as the 

estimation of their intensity is given in  literatures [5,11], and only results are presented 

here. The estimated power spectral densities of the position (Sp) and velocity (Sv) 

measurements is given by 
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Both are assumed zero-mean white noises. Ideally, the power spectral density of velocity 

measurement noise should be given by  

pv SS 2ω=                                            (10) 

where ω  is a resonant frequency of the gyroscope. However, current velocity sensing 

circuitry technology produces a noise with spectral power that is 3~4 orders of magnitude 

larger than this ideal value. Thus, it is necessary to introduce an adaptive observer, to avoid 

measuring directly the velocity of the proof mass. 
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In designing such a velocity observer, if we are careful not to modify the velocity 

measurement-based adaptive control structure, the analytic convergence and resolution 

results of the velocity measurement-based adaptive control can be easily extended for the 

case when velocity estima tion is utilized. In order to estimate velocity, we introduce the 

following observer. 

pmv

pvp

qKq

qqLqq
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where pq̂  is the estimate of the position, pq&̂  is the estimate of the velocity, vq̂  is an 

additional state of the velocity observer, and L is a observer gain matrix given by 

},{ 21 LLdiagL = . To complete the modification, the velocity term q&  in the adaptive 

control law given by (7) and parameter adaptation laws in (8) is replaced by pq&̂ . 

In order to derive the closed loop error equations, we need to define the trajectory 

estimation error qqq pp −= ˆ~  and qqq vv &−= ˆ~ . When the velocity term q&  in the adaptive 

control and parameter adaptation laws is replaced by the observer generated estimate pq&̂ , 

the trajectory error, trajectory estimation error and parameter estimation error dynamics are 

given by the sum of a known linear time-varying and an unknown linear time- invariant 

components as follows: 

000)( wGxAxtAx ouoo ++=&                                                  (12) 

where [ ]T
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  ~  ~    θ&= , [ ]T
o nbw     =  and the known time varying term )(tAo  is 

given by 
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the known noise distribution matrix is given by 























Γ−
−

−
=

LqqW
LI

L
LI

G

mm

o

γ
γ

γ

),(0

0

00

&

, 

and the unknown time invariant term uA  is 
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 is parameter estimation errors and 
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where ijr , ijd  and zΩ  are respectively elements of R, D and Ω . 
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The mean trajectory of the system under the stochastic environment is the same as the 

deterministic case and its convergence properties are also the same as the deterministic 

case. Unfortunately, the trajectory and trajectory estimation error dynamics part of (12) are 

not strictly positive real (SPR), and therefore it is difficult to prove the stability of this 

system using standard adaptive control techniques, based on the use of a Lyapunov 

function candidate. In order to prove stability, we will make use of the fact that )(tAo  is a 

periodic time-varying matrix with known period )/(4 21
2 ωωπ=T , where 1ω  and 2ω  are 

model reference frequencies. The stability of periodic time-varying linear systems can be 

analyzed using Floquet-Lyapunov theory [12]. 

 

Theorem 3 (Stability) 

Given the observer (11), the adaptive control and parameter adaptation laws, it is always 

possible to choose a velocity observer gain L, which makes the closed loop error dynamics 

(12) locally, uniformly and exponentially stable. 

 

Proof: 

According to Floquet-Lyapunov theory, there exists a periodic transformation matrix that 

converts a periodic time-varying linear system into a time invariant linear system [12]. Let 

)0,(tΦ  be a state transition matrix of the known linear part of (12), i.e.,  

)0,()(
)0,(

ttA
dt

td
o Φ=

Φ
                                                           (13) 

then it can be written as product of two matrices as 
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  ( )tAtFt exp)()0,( =Φ                                                 (14) 

where )(tF  is a continuous periodic nonsingular matrix with period T, which satisfies the 

condition )()0( TFF =  I=  and A  is a constant matrix. The stability of a linear known 

part is determined by the eigenvalues of A . In order to determine )(tF , the state transition 

matrix )0,(tΦ  must be computed. However, there is no simple way to compute )0,(tΦ  

analytically. Instead, the transition matrix at the end of one period is computed by 

numerical integration of Eq. (13) and A  is obtained by 
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where ( ) )0,()0,(ln(exp TT Φ=Φ . In Fig. 2, the calculated stability boundaries of the time 

varying part of Eq. (12) are presented in terms of the observer gain L, for various reference 

model frequencies. As shown in the figure, it is always possible to choose a velocity 

observer gain L such that A  is asymptotically stable. Now, let the Lyapunov candidate be 
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within the domain of attraction, 

     )(2 max
2
max

2
min Mβλαα >                                                            (17) 

where  )(min 1

0min tF
Tt

−

≤≤
=α , )(max 1

0max tF
Tt

−

≤≤
=α  and uA=β . Notice that the unknown 

matrix uA  is composed of the damping D, frequency modeling error R and applied angular 

rate Ω , which all have very small values. Therefore, β  is a small number. 

 

V. PERFORMANCE ANALYSIS  

We now examine the convergence rate and stochastic variance of the angular rate estimate. 

This analysis gives us an estimate of the bandwidth and resolution of an adaptive 

controlled gyroscope. 

A. Convergence Rate Analysis 

In this section, the parameter convergence rate of the adaptive control scheme designed in 

previous section is studied using averaging analysis. Averaging analysis is commonly used 

in the adaptive control literature [13], and will be used to estimate the convergence 

properties of gyroscope parameter estimates including the applied angular rate. The 

convergence rate of the angular rate estimate is important because it determines the 

bandwidth of the gyroscope. 

Using the fact that parameter estimation dynamics is slower than trajectory and trajectory 

estimation dynamics, we can relate the slow parameter estimation dynamics with the 

following averaged dynamics. 
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 )),((ˆ ),(   
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where oM̂  is a transfer function matrix, 
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Note that the transfer function )(ˆ sM o  has two different forcing frequencies, i.e., one is the 

x-axis resonant frequency and the other is the y-axis resonant frequency, i.e. 

)sin( 10 tXxm ω= ,    )cos( 110 tXxm ωω=&  

)sin( 20 tYym ω= ,     )cos( 220 tYym ωω=&  

Therefore, the filtered steady-state response through )),((ˆ
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T
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A sufficient condition for avθ
~

 in Eq. (18) to converge to zero is that cross-correlation 

matrix ( ))(ˆ
ˆ

T
oww WMWAVGR =  is a positive-definite. If the gains 1γ  and 2γ  are too small, 

and/or 1ω  and 2ω  are too far apart, the magnitudes 1A  and 2A  are negligible and phase 

0
2,1 90±≥φ . In that case, the filtered steady-state response of the cross-axis signals, 

including the angular rate term, cannot make any significant contribution to the cross-

correlation matrix wwR ˆ  or may cause instability. This results in large un-damped 

oscillations, or divergence in the parameter estimation response. On the other hand, when 

1ω  and 2ω  are too close to each other, the error dynamics response still results in large un-

damped oscillations, because of lack of persistence of excitation. It is important to mention 

here that the observer gain L should be chosen such that the closed loop system is stable, 

which is always possible to do. The appropriate choice for the frequency ratio 

12 / ωωω =∆  also depends on the choice of the control gains 1γ  and 2γ . Selecting gains 

1γ  and 2γ  to be too small, makes the choice of an appropriate 12 / ωωω =∆  hard, since a 
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slight mismatch in 1ω  and 2ω  results in small values for 2,1A  and 0
2,1 90>φ . Selecting 

large values for observer gains makes the response of the gyroscope resemble that of the 

velocity measurement-based gyroscope. According to the simulation study that will be 

subsequently described in this section, a ratio between 10% to 40% between the two 

resonant frequencies is a reasonable choice, when sufficiently large values of 1γ  and 2γ , 

and appropriate values of gains 1L  and 2L  are employed. 

Using the facts that the products of sinusoids at different frequencies have zero average, 

the average equation for parameter estimate error dynamics can be obtained. All cross-term 

parameter estimates dynamics are coupled with each other. However, as the control gains 

1γ  and 2γ , and observer gains 1L  and 2L  are made sufficiently large and/or the reference 

model resonant frequencies 1ω  and 2ω  are close enough, all cross-terms in the parameter 

estimates dynamics become less coupled, because 121 ≈≈ AA  and 021 ≈≈ φφ . In this case, 

the parameter estimates errors are almost uncoupled with each other, except for the 

estimates errors of the asymmetric damping term and the angular rate. Their dynamics are 

coupled and given by 

    

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By the Eq. (20), if we set the reference model oscillations such that 2010 ωω YX = , the 

dynamics of the angular rate estimate can be decoupled from that of the asymmetric 

damping estimate. In this case, all estimates dynamics is almost decoupled, and therefore it 

is possible to adjust the dynamics of angular rate estimate independently, without 

significantly affecting the estimation dynamics of fabrication imperfections.  

Applying this decoupling condition, the average dynamics of the angular rate estimate is 

approximately given by 

       zavzav X Ω−≈Ω Ω
~2~ 2

1
2
0 ωγ&                                                          (21) 

This is the exactly same result that is obtained for the adaptive control system without 

velocity estimation [14]. Thus, the bandwidth of the adaptive controlled gyroscope with 

velocity estimation is also approximately given by 2
1

2
02 ωγ XBW Ω≈ , which implies that 

the bandwidth of the MEMS gyroscope under the observer based adaptive control is 

proportional to the adaptation gain Ωγ  and the energy of oscillation of the reference model. 

Figure 3 and 4 show the comparison between analytical convergence rate of angular rate 

given by Eq. (21) and the simulation results for various resonant frequency ratios and 

control gains. The observer-based adaptive control system derived is more sensitive to the 

variations in the resonant frequency ratio and control gains than the velocity measurement-

based adaptive control design. This is because, given a moderate value for the observer 

gains, the phase differences in )(ˆ sM o  are larger than that of the adaptive control case for 

the same changes in resonant frequency. Although large control gains 1γ  and 2γ  are good 

for decoupling the parameter estimation dynamics, selecting large values for these control 
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gains is not desirable since they may cause large overshoot in the transient response of the 

gyroscope dynamics and may cause decrease the resolution performance of the gyroscope, 

as well be discussed in the next sub-section. Figure 5 shows a comparison between the 

analytical convergence rate of the angular rate estimate given by Eq. (21) and simulation 

results for various observer gains.  As shown in Fig. 5, if the observer gain is sufficiently 

large, the actual convergence rate is very close to the analytical result. 

B.  Resolution Analysis 

Measurement and Brownian noises limit the minimum detectable signal of angular rate 

estimate. Brownian noise is a thermal noise that is produced by the collisions between air 

molecules and the structure, or by viscoelastic effects in the suspension of the gyroscope, 

and enters to the system as a noisy force generator. Brownian noise can be modeled as a 

zero-mean white input noise, and its power spectral density is given by 2/4 mTdkS Bb =  

[4], where m is the mass of the proof mass and d is a damping coefficient. The standard 

deviation of the angular rate estimate error, or resolution, is obtained from covariance 

matrix of ox  of Eq. (12). Covariance oP  of ox  can be easily pre-computed independently 

with mean trajectory by solving the following familiar Lyapunov equation.  

     T
ooooo

T
ooo GSGPAAPP ++≈&                                          (22) 

where } ,{ pbo SSdiagS = . Resolution of angular rate estimate, Ωσ , is computed by 

 T
oCCP=Ωσ                           (23) 
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where ]10[ 141×=C . The ultimate achievable resolution can be calculated by setting 0=pS  

and computing Ωσ using Eq. (23). 

Figure 6 shows the effects of various design parameters such as control gains and 

parameter adaptation gains on the variance of the angular rate estimate error. The plots in 

Fig. 6 were obtained from the time domain response of Eq. (23) and the steady-state values 

represent the resulting steady-state covariance. Except for the fact that control gain 

variations make slight changes in the covariance matrix oP , only the angular rate 

adaptation gain Ωγ  significantly affects the variance. This implies that the resolution can 

be adjusted with the angular rate adaptation gain independently, without significantly 

affecting the other dynamics of the fabrication imperfection estimates. The resolution 

performance of the observer-based adaptive controlled gyroscope is almost the same as the 

one that would be obtained if the power spectral density of velocity measurement noise is 

ideally given by Eq. (10). 

C. Advantages of Adaptive Mode of Operation 

The main advantages of the adaptive mode of operation, proposed in this paper, include 

self-calibration, large robustness to parameter variations, and no zero-rate output. 

Moreover, because a single adaptive scheme controls all operation tasks of the gyroscope, 

i.e. from initiating the vibratory motion of proof mass to estimating the angular rate, 

analytic predictions for the bandwidth and resolution of the gyroscope are easy to obtain 

and relatively precise. The proposed adaptive controller design is also easy to implement in 

high Q systems. Thus, the noise properties associated with a high Q system can be fully 
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utilized. Another advantage of the adaptive mode of operation is that it is easy to adjust the 

trade-off between bandwidth and resolution by simply adjusting the angular rate adaptation 

gain. In contrast, in a gyroscope operating under the conventional open- loop or force-

balancing closed- loop mode of operatio n, the bandwidth and ultimate resolution of the 

gyroscope depend on the low-pass filter characteristics that is used to demodulate the 

angular rate estimate. Thus, it is difficult to adjust both bandwidth and resolution, without 

changing the demodulation filter. Therefore, the adaptive mode of operation is better suited 

for medium-cost gyroscopes that are used in high-performance applications. One 

disadvantage of the adaptive mode of operation is that it cannot be applied to a 

conventional gyroscope structure, since it requires the unmatched resonance mode of the 

gyroscopes and equal movements in the x and y axes. This means that for applying 

proposed adaptive operation scheme of MEMS gyroscopes, new gyroscope should be 

designed so that equal movements in the x and y axes allow. Figure 7 shows a comparison 

between a conventional mode and an adaptive mode of operation. Detailed description of 

the design and fabrication process of new MEMS gyroscope is in reference [10]. 

 

VI. SIMULATIONS 

A simulation study using the preliminary design data of the MIT-SOI MEMS gyroscope 

was conducted, to test the analytical results presented in this paper and verify its predicted 

performance. The data of some of gyroscope parameters in the model is summarized in 

Table 2. For simulation purposes, we allowed %5±  parameter variations for the spring and 
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damping coefficients and assumed %1±  magnitude of nominal spring and damping 

coefficients for their off-diagonal terms. Notice that the simulation results are shown in 

non-dimensional units, which are non-dimensionalized based on the proof-mass, length of 

one micron and x-axis nominal natural frequency.  

Figure 8 shows the time responses of the estimation errors for the various gyroscope 

parameters. The estimate of angular rate response to step input angular rate is shown in Fig. 

9. In this figure, the upper and lower bounds of its analytically estimated standard deviation 

are also plotted. Figure 10 shows the estimate of angular rate response to sinusoidal input 

angular rate. These simulation results support the theoretical results obtained in this paper. 

 

VII.  CONCLUSIONS 

Dynamic analysis of typical MEMS gyroscopes shows that fabrication imperfections are a 

major factor limiting the performance of the gyroscope. Thus, the main purpose of 

gyroscope control should be to null out these imperfections and cross-couplings effectively 

during the operation of the gyroscope. However, the motion of a conventional mode-

matched z-axis gyroscope does not have sufficient  persistence of excitation and, as a result, 

all major fabrication imperfections cannot be identified and compensated for in an on- line 

fashion. Moreover, some types of fabrication imperfections, which can be modeled as 

cross-damping terms, produce inherent zero-rate output (ZRO). 

An analysis technique for identifying z-axis gyroscope operating conditions, which permit 

the on- line compensation of fabrication imperfections and self-calibration, was developed. 
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It showed that the motion of a mode-unmatched gyroscope, in which the resonance 

frequency of the x-axis is different from that of the y-axis, has sufficient persistence of 

excitation to permit the identification of all major fabrication imperfections as well as 

“input” angular rate. Based on this analysis, new operation strategies were formulated for 

MEMS gyroscopes with two un-matched oscillatory modes. A new adaptive control 

algorithm with velocity estimation was developed, which operates with only measurements 

of the x and y positions of the proof mass. The parameter adaptation algorithm (PAA) in 

the adaptive controller simultaneously estimates the component of the angular velocity 

vector, which is orthogonal to the plane of oscillation of the gyroscope (the z-axis) and the 

linear damping and stiffness model coefficients. The convergence and resolution analysis 

presented in paper showed that the proposed adaptive controlled scheme offers several 

advantages over conventional modes of operation. These advantages include a larger 

operational bandwidth, absence of zero-rate output, self- calibration and a large robustness 

to parameter variations, which are caused by fabrication defects and ambient conditions. 

A simulation study using the preliminary design data of the MIT-SOI MEMS gyroscope 

was conducted, to test the analytical results derived in this paper and to verify the predicted 

performance of the different proposed controlled schemes. Simulation results were in 

strong agreement with the analytically derived predicted results and performance estimates. 
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NOMENCLATURE 

)(⋅AVG : AVERAGE OF )(⋅  

dtbda /
r

: time derivative of a vector b
r

 in the frame {a} 

0,CC p : parasite and nominal sensing capacitances 

21, dd : damping coefficients 

I : identity matrix 

21 ,kk : spring coefficients 

Bk : Boltzmann’s constant 

m : proof mass 

yx QQ , : quality factors of x and y-axis 

ampwire RR , : wiring and amplifier resistances 

T : absolute temperature 

DCVV ,0 : nominal and DC voltages 

00 ,YX : amplitudes of x and y-axis oscillation 

zyx ΩΩΩ ,, : angular velocity components along x, y and z-axis of the gyro frame 

yx ττ , : control forces along x and y-axis of the gyro frame 

)(max ⋅λ : maximum eigenvalue of )(⋅  
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⋅ : norm of vector or matrix 

T)(⋅ : transpose of )(⋅  

1)( −⋅ : inverse of )(⋅  
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Figure 1. A model of a MEMS z-axis gyroscope 

Figure 2. Stability bounds with respect to observer gain L : 

(a) 5.0,1, 21 === ωωγ I ,   (b) 1,1, 21 === ωωγ I  

(c) 5.1,1, 21 === ωωγ I ,   (d) 2,1, 21 === ωωγ I  

(e) 5.1,1,5.0 21 === ωωγ I ,    (f) is the same as (c) 

 

Figure 3. Convergence rate comparisons  between analytical equation and various ratios of 

resonant frequencies 

 

Figure 4. Convergence rate comparisons  between analytical equation and various control 

gains 

 

Figure 5. Convergence rate comparisons  between analytical equation and various observer 

gains 

 

Figure 6. Variance variations of angular rate estimate error zΩ
~

 due to  

(a) angular rate adaptation gain Ωγ , (b) control gains 2,1γ , 

(c) spring coefficient adaptation gain Rγ  , (d) damping coefficient adaptation 

 

Figure 7. Comparison between a conventional and an adaptive mode 

Figure 8.  Parameter estimation errors: (a) damping coefficients, (b) spring coefficients 

 

Figure 9. Time responses of angular rate estimate to the 5 deg/sec step input 

Figure 10. Time responses of angular rate estimate to the 5 deg/sec sinusoid input at 50 Hz 
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parameter Value 

mass 710095.5 −×  kg 

x-axis frequency 4.17 KHz 

y-axis frequency 5.11 KHz 

Quality factor 410  

Brownian noise PSD sec 1047.1 226 N−×  

Position noise PSD sec 1049.1 227 m−×  

Velocity noise PSD secm/sec)( 1094.2 212−×  

 
 
 

Table 2. Key parameters of the gyroscope 
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Figure 1. A model of a MEMS z-axis gyroscope 
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Figure 2. Stability bounds with respect to observer gain L : 

    (a) 5.0,1, 21 === ωωγ I ,   (b) 1,1, 21 === ωωγ I  

(c) 5.1,1, 21 === ωωγ I ,   (d) 2,1, 21 === ωωγ I  

(e) 5.1,1,5.0 21 === ωωγ I ,    (f) is the same as (c) 
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Figure 3. Convergence rate comparisons between analytical equation  

and various ratios of resonant frequencies 
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Figure 4. Convergence rate comparisons between analytical equation  

and various control gains 
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Figure 5. Convergence rate comparisons between analytical equation  

and various observer gains 
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Figure 6. Variance variations of angular rate estimate error zΩ
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 due to  

(a) angular rate adaptation gain Ωγ , (b) control gains 2,1γ ,  

(c) spring coefficient adaptation gain Rγ  , (d) damping coefficient adaptation 
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Figure 7. Comparison between a conventional  

and an adaptive mode 
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Figure 8. Parameter estimation errors:  

(a) damping coefficients, (b) spring coefficients 
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Figure 9. Time responses of angular rate estimate  

to the 5 deg/sec step input 
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Figure 10. Time responses of angular rate estimate 

to the 5 deg/sec sinusoid input at 50 Hz 

 


